Cargando…

Spectral, thermal studies and biological activity of pyrazinamide complexes

Synthesis and spectrothermal characterization of new fabricated pyrazinamide complexes with metal [Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)] salts are reported. The structural chemistry of these complexes is achieved via elemental analysis, spectral (UV, visible, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Ali, Alaa E., Elasala, Gehan S., Mohamed, Essam A., Kolkaila, Sherif A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895664/
https://www.ncbi.nlm.nih.gov/pubmed/31844764
http://dx.doi.org/10.1016/j.heliyon.2019.e02912
Descripción
Sumario:Synthesis and spectrothermal characterization of new fabricated pyrazinamide complexes with metal [Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)] salts are reported. The structural chemistry of these complexes is achieved via elemental analysis, spectral (UV, visible, and IR), thermal (DTA and TGA) as well as magnetic susceptibility. In these new octahedral complexes (Zn complex is tetrahedral), pyrazinamide acts as a bidentate ligand. Pyrazinamide complexes show higher activity than pyrazinamide for some strains. The geometry of the complexes is converted from Oh to Td during their thermal decomposition. The decomposition mechanisms are suggested and the thermodynamic parameters for the thermal decomposition steps are evaluated.