Cargando…

Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications

In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constan...

Descripción completa

Detalles Bibliográficos
Autores principales: Abolarinwa, Abimbola, Salawu, Sulyman O., Onate, Clement A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895733/
https://www.ncbi.nlm.nih.gov/pubmed/31844717
http://dx.doi.org/10.1016/j.heliyon.2019.e02784
_version_ 1783476621002407936
author Abolarinwa, Abimbola
Salawu, Sulyman O.
Onate, Clement A.
author_facet Abolarinwa, Abimbola
Salawu, Sulyman O.
Onate, Clement A.
author_sort Abolarinwa, Abimbola
collection PubMed
description In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constant, [Formula: see text] and [Formula: see text] are smooth functions. As an application, Liouville-type theorems for various special cases of the equation are recovered. Furthermore, we discuss nonexistence of smooth solution to Yamabe type problem on [Formula: see text] with nonpositive weighted scalar curvature.
format Online
Article
Text
id pubmed-6895733
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68957332019-12-16 Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications Abolarinwa, Abimbola Salawu, Sulyman O. Onate, Clement A. Heliyon Article In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constant, [Formula: see text] and [Formula: see text] are smooth functions. As an application, Liouville-type theorems for various special cases of the equation are recovered. Furthermore, we discuss nonexistence of smooth solution to Yamabe type problem on [Formula: see text] with nonpositive weighted scalar curvature. Elsevier 2019-11-14 /pmc/articles/PMC6895733/ /pubmed/31844717 http://dx.doi.org/10.1016/j.heliyon.2019.e02784 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Abolarinwa, Abimbola
Salawu, Sulyman O.
Onate, Clement A.
Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title_full Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title_fullStr Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title_full_unstemmed Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title_short Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
title_sort gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895733/
https://www.ncbi.nlm.nih.gov/pubmed/31844717
http://dx.doi.org/10.1016/j.heliyon.2019.e02784
work_keys_str_mv AT abolarinwaabimbola gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications
AT salawusulymano gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications
AT onateclementa gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications