Cargando…
Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications
In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constan...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895733/ https://www.ncbi.nlm.nih.gov/pubmed/31844717 http://dx.doi.org/10.1016/j.heliyon.2019.e02784 |
_version_ | 1783476621002407936 |
---|---|
author | Abolarinwa, Abimbola Salawu, Sulyman O. Onate, Clement A. |
author_facet | Abolarinwa, Abimbola Salawu, Sulyman O. Onate, Clement A. |
author_sort | Abolarinwa, Abimbola |
collection | PubMed |
description | In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constant, [Formula: see text] and [Formula: see text] are smooth functions. As an application, Liouville-type theorems for various special cases of the equation are recovered. Furthermore, we discuss nonexistence of smooth solution to Yamabe type problem on [Formula: see text] with nonpositive weighted scalar curvature. |
format | Online Article Text |
id | pubmed-6895733 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-68957332019-12-16 Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications Abolarinwa, Abimbola Salawu, Sulyman O. Onate, Clement A. Heliyon Article In this paper local and global gradient estimates are obtained for positive solutions to the following nonlinear elliptic equation [Formula: see text] on complete smooth metric measure spaces [Formula: see text] with ∞-Bakry-Émery Ricci tensor bounded from below, where α is an arbitrary real constant, [Formula: see text] and [Formula: see text] are smooth functions. As an application, Liouville-type theorems for various special cases of the equation are recovered. Furthermore, we discuss nonexistence of smooth solution to Yamabe type problem on [Formula: see text] with nonpositive weighted scalar curvature. Elsevier 2019-11-14 /pmc/articles/PMC6895733/ /pubmed/31844717 http://dx.doi.org/10.1016/j.heliyon.2019.e02784 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Abolarinwa, Abimbola Salawu, Sulyman O. Onate, Clement A. Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title | Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title_full | Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title_fullStr | Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title_full_unstemmed | Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title_short | Gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
title_sort | gradient estimates for a nonlinear elliptic equation on smooth metric measure spaces and applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895733/ https://www.ncbi.nlm.nih.gov/pubmed/31844717 http://dx.doi.org/10.1016/j.heliyon.2019.e02784 |
work_keys_str_mv | AT abolarinwaabimbola gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications AT salawusulymano gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications AT onateclementa gradientestimatesforanonlinearellipticequationonsmoothmetricmeasurespacesandapplications |