Cargando…

Deregulated Adhesion Program in Palatal Keratinocytes of Orofacial Cleft Patients

Orofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these proces...

Descripción completa

Detalles Bibliográficos
Autores principales: Mammadova, Aysel, Carels, Carine E.L., Zhou, Jie, Gilissen, Christian, Helmich, Maria P.A.C., Bian, Zhuan, Zhou, Huiqing, Von den Hoff, Johannes W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895790/
https://www.ncbi.nlm.nih.gov/pubmed/31652793
http://dx.doi.org/10.3390/genes10110836
Descripción
Sumario:Orofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24% and 17% for the first and second component, respectively. In OFC cells, 228 genes were differentially expressed (p < 0.001). Gene ontology analysis showed enrichment of genes involved in β1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 μm) vs. non-OFC keratinocytes (503.4 ± 41.81 μm, p < 0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.