Cargando…
Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology
Whole exome sequencing (WES) enables the analysis of all protein coding sequences in the human genome. This technology enables the investigation of cancer-related genetic aberrations that are predominantly located in the exonic regions. WES delivers high-throughput results at a reasonable price. Her...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895801/ https://www.ncbi.nlm.nih.gov/pubmed/31690036 http://dx.doi.org/10.3390/cancers11111725 |
_version_ | 1783476634696810496 |
---|---|
author | Bartha, Áron Győrffy, Balázs |
author_facet | Bartha, Áron Győrffy, Balázs |
author_sort | Bartha, Áron |
collection | PubMed |
description | Whole exome sequencing (WES) enables the analysis of all protein coding sequences in the human genome. This technology enables the investigation of cancer-related genetic aberrations that are predominantly located in the exonic regions. WES delivers high-throughput results at a reasonable price. Here, we review analysis tools enabling utilization of WES data in clinical and research settings. Technically, WES initially allows the detection of single nucleotide variants (SNVs) and copy number variations (CNVs), and data obtained through these methods can be combined and further utilized. Variant calling algorithms for SNVs range from standalone tools to machine learning-based combined pipelines. Tools for CNV detection compare the number of reads aligned to a dedicated segment. Both SNVs and CNVs help to identify mutations resulting in pharmacologically druggable alterations. The identification of homologous recombination deficiency enables the use of PARP inhibitors. Determining microsatellite instability and tumor mutation burden helps to select patients eligible for immunotherapy. To pave the way for clinical applications, we have to recognize some limitations of WES, including its restricted ability to detect CNVs, low coverage compared to targeted sequencing, and the missing consensus regarding references and minimal application requirements. Recently, Galaxy became the leading platform in non-command line-based WES data processing. The maturation of next-generation sequencing is reinforced by Food and Drug Administration (FDA)-approved methods for cancer screening, detection, and follow-up. WES is on the verge of becoming an affordable and sufficiently evolved technology for everyday clinical use. |
format | Online Article Text |
id | pubmed-6895801 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68958012019-12-24 Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology Bartha, Áron Győrffy, Balázs Cancers (Basel) Review Whole exome sequencing (WES) enables the analysis of all protein coding sequences in the human genome. This technology enables the investigation of cancer-related genetic aberrations that are predominantly located in the exonic regions. WES delivers high-throughput results at a reasonable price. Here, we review analysis tools enabling utilization of WES data in clinical and research settings. Technically, WES initially allows the detection of single nucleotide variants (SNVs) and copy number variations (CNVs), and data obtained through these methods can be combined and further utilized. Variant calling algorithms for SNVs range from standalone tools to machine learning-based combined pipelines. Tools for CNV detection compare the number of reads aligned to a dedicated segment. Both SNVs and CNVs help to identify mutations resulting in pharmacologically druggable alterations. The identification of homologous recombination deficiency enables the use of PARP inhibitors. Determining microsatellite instability and tumor mutation burden helps to select patients eligible for immunotherapy. To pave the way for clinical applications, we have to recognize some limitations of WES, including its restricted ability to detect CNVs, low coverage compared to targeted sequencing, and the missing consensus regarding references and minimal application requirements. Recently, Galaxy became the leading platform in non-command line-based WES data processing. The maturation of next-generation sequencing is reinforced by Food and Drug Administration (FDA)-approved methods for cancer screening, detection, and follow-up. WES is on the verge of becoming an affordable and sufficiently evolved technology for everyday clinical use. MDPI 2019-11-04 /pmc/articles/PMC6895801/ /pubmed/31690036 http://dx.doi.org/10.3390/cancers11111725 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Bartha, Áron Győrffy, Balázs Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title | Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title_full | Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title_fullStr | Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title_full_unstemmed | Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title_short | Comprehensive Outline of Whole Exome Sequencing Data Analysis Tools Available in Clinical Oncology |
title_sort | comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895801/ https://www.ncbi.nlm.nih.gov/pubmed/31690036 http://dx.doi.org/10.3390/cancers11111725 |
work_keys_str_mv | AT barthaaron comprehensiveoutlineofwholeexomesequencingdataanalysistoolsavailableinclinicaloncology AT gyorffybalazs comprehensiveoutlineofwholeexomesequencingdataanalysistoolsavailableinclinicaloncology |