Cargando…
Artificial Intelligence in Lung Cancer Pathology Image Analysis
Objective: Accurate diagnosis and prognosis are essential in lung cancer treatment selection and planning. With the rapid advance of medical imaging technology, whole slide imaging (WSI) in pathology is becoming a routine clinical procedure. An interplay of needs and challenges exists for computer-a...
Autores principales: | Wang, Shidan, Yang, Donghan M., Rong, Ruichen, Zhan, Xiaowei, Fujimoto, Junya, Liu, Hongyu, Minna, John, Wistuba, Ignacio Ivan, Xie, Yang, Xiao, Guanghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895901/ https://www.ncbi.nlm.nih.gov/pubmed/31661863 http://dx.doi.org/10.3390/cancers11111673 |
Ejemplares similares
-
ConvPath: A software tool for lung adenocarcinoma digital pathological image analysis aided by a convolutional neural network
por: Wang, Shidan, et al.
Publicado: (2019) -
Features of tumor-microenvironment images predict targeted therapy survival benefit in patients with EGFR-mutant lung cancer
por: Wang, Shidan, et al.
Publicado: (2023) -
Deep Learning of Cell Spatial Organizations Identifies Clinically Relevant Insights in Tissue Images
por: Wang, Shidan, et al.
Publicado: (2023) -
Molecular differences across invasive lung adenocarcinoma morphological subgroups
por: Ci, Bo, et al.
Publicado: (2020) -
Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome
por: Wang, Shidan, et al.
Publicado: (2018)