Cargando…
EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model
Deep learning (DL) methods have been used increasingly widely, such as in the fields of speech and image recognition. However, how to design an appropriate DL model to accurately and efficiently classify electroencephalogram (EEG) signals is still a challenge, mainly because EEG signals are characte...
Autores principales: | Zeng, Hong, Wu, Zhenhua, Zhang, Jiaming, Yang, Chen, Zhang, Hua, Dai, Guojun, Kong, Wanzeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6895992/ https://www.ncbi.nlm.nih.gov/pubmed/31739605 http://dx.doi.org/10.3390/brainsci9110326 |
Ejemplares similares
-
Using SincNet for Learning Pathological Voice Disorders
por: Hung, Chao-Hsiang, et al.
Publicado: (2022) -
A LightGBM-Based EEG Analysis Method for Driver Mental States Classification
por: Zeng, Hong, et al.
Publicado: (2019) -
Multi-Scale Frequency Bands Ensemble Learning for EEG-Based Emotion Recognition
por: Shen, Fangyao, et al.
Publicado: (2021) -
Automatic and Direct Identification of Blink Components from Scalp EEG
por: Kong, Wanzeng, et al.
Publicado: (2013) -
InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
por: Zeng, Hong, et al.
Publicado: (2020)