Cargando…
Development of Tissue-Specific Age Predictors Using DNA Methylation Data
DNA methylation patterns have been shown to change throughout the normal aging process. Several studies have found epigenetic aging markers using age predictors, but these studies only focused on blood-specific or tissue-common methylation patterns. Here, we constructed nine tissue-specific age pred...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896025/ https://www.ncbi.nlm.nih.gov/pubmed/31690030 http://dx.doi.org/10.3390/genes10110888 |
_version_ | 1783476688618782720 |
---|---|
author | Choi, Heeyeon Joe, Soobok Nam, Hojung |
author_facet | Choi, Heeyeon Joe, Soobok Nam, Hojung |
author_sort | Choi, Heeyeon |
collection | PubMed |
description | DNA methylation patterns have been shown to change throughout the normal aging process. Several studies have found epigenetic aging markers using age predictors, but these studies only focused on blood-specific or tissue-common methylation patterns. Here, we constructed nine tissue-specific age prediction models using methylation array data from normal samples. The constructed models predict the chronological age with good performance (mean absolute error of 5.11 years on average) and show better performance in the independent test than previous multi-tissue age predictors. We also compared tissue-common and tissue-specific aging markers and found that they had different characteristics. Firstly, the tissue-common group tended to contain more positive aging markers with methylation values that increased during the aging process, whereas the tissue-specific group tended to contain more negative aging markers. Secondly, many of the tissue-common markers were located in Cytosine-phosphate-Guanine (CpG) island regions, whereas the tissue-specific markers were located in CpG shore regions. Lastly, the tissue-common CpG markers tended to be located in more evolutionarily conserved regions. In conclusion, our prediction models identified CpG markers that capture both tissue-common and tissue-specific characteristics during the aging process. |
format | Online Article Text |
id | pubmed-6896025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68960252019-12-24 Development of Tissue-Specific Age Predictors Using DNA Methylation Data Choi, Heeyeon Joe, Soobok Nam, Hojung Genes (Basel) Article DNA methylation patterns have been shown to change throughout the normal aging process. Several studies have found epigenetic aging markers using age predictors, but these studies only focused on blood-specific or tissue-common methylation patterns. Here, we constructed nine tissue-specific age prediction models using methylation array data from normal samples. The constructed models predict the chronological age with good performance (mean absolute error of 5.11 years on average) and show better performance in the independent test than previous multi-tissue age predictors. We also compared tissue-common and tissue-specific aging markers and found that they had different characteristics. Firstly, the tissue-common group tended to contain more positive aging markers with methylation values that increased during the aging process, whereas the tissue-specific group tended to contain more negative aging markers. Secondly, many of the tissue-common markers were located in Cytosine-phosphate-Guanine (CpG) island regions, whereas the tissue-specific markers were located in CpG shore regions. Lastly, the tissue-common CpG markers tended to be located in more evolutionarily conserved regions. In conclusion, our prediction models identified CpG markers that capture both tissue-common and tissue-specific characteristics during the aging process. MDPI 2019-11-04 /pmc/articles/PMC6896025/ /pubmed/31690030 http://dx.doi.org/10.3390/genes10110888 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choi, Heeyeon Joe, Soobok Nam, Hojung Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title | Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title_full | Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title_fullStr | Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title_full_unstemmed | Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title_short | Development of Tissue-Specific Age Predictors Using DNA Methylation Data |
title_sort | development of tissue-specific age predictors using dna methylation data |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896025/ https://www.ncbi.nlm.nih.gov/pubmed/31690030 http://dx.doi.org/10.3390/genes10110888 |
work_keys_str_mv | AT choiheeyeon developmentoftissuespecificagepredictorsusingdnamethylationdata AT joesoobok developmentoftissuespecificagepredictorsusingdnamethylationdata AT namhojung developmentoftissuespecificagepredictorsusingdnamethylationdata |