Cargando…
Segmentation and Grade Prediction of Colon Cancer Digital Pathology Images Across Multiple Institutions
Distinguishing benign from malignant disease is a primary challenge for colon histopathologists. Current clinical methods rely on qualitative visual analysis of features such as glandular architecture and size that exist on a continuum from benign to malignant. Consequently, discordance between hist...
Autores principales: | Rathore, Saima, Iftikhar, Muhammad Aksam, Chaddad, Ahmad, Niazi, Tamim, Karasic, Thomas, Bilello, Michel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896042/ https://www.ncbi.nlm.nih.gov/pubmed/31683818 http://dx.doi.org/10.3390/cancers11111700 |
Ejemplares similares
-
Glioma Grading via Analysis of Digital Pathology Images Using Machine Learning
por: Rathore, Saima, et al.
Publicado: (2020) -
Advancements in MRI-Based Radiomics and Artificial Intelligence for Prostate Cancer: A Comprehensive Review and Future Prospects
por: Chaddad, Ahmad, et al.
Publicado: (2023) -
Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Multimodal Radiomic Features for the Predicting Gleason Score of Prostate Cancer
por: Chaddad, Ahmad, et al.
Publicado: (2018) -
Magnetic Resonance Imaging Based Radiomic Models of Prostate Cancer: A Narrative Review
por: Chaddad, Ahmad, et al.
Publicado: (2021)