Cargando…
Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics
Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology,...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896097/ https://www.ncbi.nlm.nih.gov/pubmed/31671666 http://dx.doi.org/10.3390/cancers11111691 |
_version_ | 1783476705552236544 |
---|---|
author | Muscarella, Lucia Anna Fabrizio, Federico Pio De Bonis, Maria Mancini, Maria Teresa Balsamo, Teresa Graziano, Paolo Centra, Flavia Sparaneo, Angelo Trombetta, Domenico Bonfitto, Antonio Scagliusi, Vito Larizza, Pietro Capoluongo, Ettore Domenico Fazio, Vito Michele |
author_facet | Muscarella, Lucia Anna Fabrizio, Federico Pio De Bonis, Maria Mancini, Maria Teresa Balsamo, Teresa Graziano, Paolo Centra, Flavia Sparaneo, Angelo Trombetta, Domenico Bonfitto, Antonio Scagliusi, Vito Larizza, Pietro Capoluongo, Ettore Domenico Fazio, Vito Michele |
author_sort | Muscarella, Lucia Anna |
collection | PubMed |
description | Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology, a rapid workflow for DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissue samples, as well as producing high quality library preparation, can be real challenges. Here we consider these targets and how applying effective automation technology to NGS workflows may help improve yield, timing and quality-control. We firstly evaluated DNA recovery from archived FFPE blocks from three different manual extraction methods and two automated extraction workstations. The workflow was then implemented to somatic (lung/colon panel) and germline (BRCA1/2) library preparation for NGS analysis exploiting two automated workstations. All commercial kits gave good results in terms of DNA yield and quality. On the other hand, the automated workstation workflow has been proven to be a valid automatic extraction system to obtain high quality DNA suitable for NGS analysis (lung/colon Ampli-seq panel). Moreover, it can be efficiently integrated with an open liquid handling platform to provide high-quality libraries from germline DNA with more reproducibility and high coverage for targeted sequences in less time (BRCA1/2). The introduction of automation in routine workflow leads to an improvement of NGS standardization and increased scale up of sample preparations, reducing labor and timing, with optimization of reagents and management. |
format | Online Article Text |
id | pubmed-6896097 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-68960972019-12-23 Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics Muscarella, Lucia Anna Fabrizio, Federico Pio De Bonis, Maria Mancini, Maria Teresa Balsamo, Teresa Graziano, Paolo Centra, Flavia Sparaneo, Angelo Trombetta, Domenico Bonfitto, Antonio Scagliusi, Vito Larizza, Pietro Capoluongo, Ettore Domenico Fazio, Vito Michele Cancers (Basel) Article Thanks to personalized medicine trends and collaborations between industry, clinical research groups and regulatory agencies, next generation sequencing (NGS) is turning into a common practice faster than one could have originally expected. When considering clinical applications of NGS in oncology, a rapid workflow for DNA extraction from formalin-fixed paraffin-embedded (FFPE) tissue samples, as well as producing high quality library preparation, can be real challenges. Here we consider these targets and how applying effective automation technology to NGS workflows may help improve yield, timing and quality-control. We firstly evaluated DNA recovery from archived FFPE blocks from three different manual extraction methods and two automated extraction workstations. The workflow was then implemented to somatic (lung/colon panel) and germline (BRCA1/2) library preparation for NGS analysis exploiting two automated workstations. All commercial kits gave good results in terms of DNA yield and quality. On the other hand, the automated workstation workflow has been proven to be a valid automatic extraction system to obtain high quality DNA suitable for NGS analysis (lung/colon Ampli-seq panel). Moreover, it can be efficiently integrated with an open liquid handling platform to provide high-quality libraries from germline DNA with more reproducibility and high coverage for targeted sequences in less time (BRCA1/2). The introduction of automation in routine workflow leads to an improvement of NGS standardization and increased scale up of sample preparations, reducing labor and timing, with optimization of reagents and management. MDPI 2019-10-30 /pmc/articles/PMC6896097/ /pubmed/31671666 http://dx.doi.org/10.3390/cancers11111691 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Muscarella, Lucia Anna Fabrizio, Federico Pio De Bonis, Maria Mancini, Maria Teresa Balsamo, Teresa Graziano, Paolo Centra, Flavia Sparaneo, Angelo Trombetta, Domenico Bonfitto, Antonio Scagliusi, Vito Larizza, Pietro Capoluongo, Ettore Domenico Fazio, Vito Michele Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title | Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title_full | Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title_fullStr | Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title_full_unstemmed | Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title_short | Automated Workflow for Somatic and Germline Next Generation Sequencing Analysis in Routine Clinical Cancer Diagnostics |
title_sort | automated workflow for somatic and germline next generation sequencing analysis in routine clinical cancer diagnostics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896097/ https://www.ncbi.nlm.nih.gov/pubmed/31671666 http://dx.doi.org/10.3390/cancers11111691 |
work_keys_str_mv | AT muscarellaluciaanna automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT fabriziofedericopio automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT debonismaria automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT mancinimariateresa automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT balsamoteresa automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT grazianopaolo automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT centraflavia automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT sparaneoangelo automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT trombettadomenico automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT bonfittoantonio automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT scagliusivito automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT larizzapietro automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT capoluongoettoredomenico automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics AT faziovitomichele automatedworkflowforsomaticandgermlinenextgenerationsequencinganalysisinroutineclinicalcancerdiagnostics |