Cargando…
In-Silico Molecular Binding Prediction for Human Drug Targets Using Deep Neural Multi-Task Learning
In in-silico prediction for molecular binding of human genomes, promising results have been demonstrated by deep neural multi-task learning due to its strength in training tasks with imbalanced data and its ability to avoid over-fitting. Although the interrelation between tasks is known to be import...
Autores principales: | Lee, Kyoungyeul, Kim, Dongsup |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896155/ https://www.ncbi.nlm.nih.gov/pubmed/31703452 http://dx.doi.org/10.3390/genes10110906 |
Ejemplares similares
-
Prediction of drug–target interactions through multi-task learning
por: Moon, Chaeyoung, et al.
Publicado: (2022) -
Prediction of binding property of RNA-binding proteins using multi-sized filters and multi-modal deep convolutional neural network
por: Chung, Taesu, et al.
Publicado: (2019) -
Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server
por: Lee, Kyoungyeul, et al.
Publicado: (2017) -
Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction
por: Han, Youngmahn, et al.
Publicado: (2017) -
Predicting human protein function with multi-task deep neural networks
por: Fa, Rui, et al.
Publicado: (2018)