Cargando…

Molecular basis of degenerative spinal disorders from a proteomic perspective

Intervertebral disc degeneration (IDD) and ligamentum flavum hypertrophy (LFH) are major causes of degenerative spinal disorders. Comparative and proteomic analysis was used to identify differentially expressed proteins (DEPs) in IDD and LFH discs compared with normal discs. Subsequent gene ontology...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Chang, Yang, Minghui, Liu, Libangxi, Zhang, Yang, Zhu, Qi, Huang, Cong, Wang, Hongwei, Zhang, Yaqing, Li, Haiyin, Li, Changqing, Huang, Bo, Feng, Chencheng, Zhou, Yue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896343/
https://www.ncbi.nlm.nih.gov/pubmed/31746390
http://dx.doi.org/10.3892/mmr.2019.10812
Descripción
Sumario:Intervertebral disc degeneration (IDD) and ligamentum flavum hypertrophy (LFH) are major causes of degenerative spinal disorders. Comparative and proteomic analysis was used to identify differentially expressed proteins (DEPs) in IDD and LFH discs compared with normal discs. Subsequent gene ontology term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of the DEPs in human IDD discs or LFH samples were performed to identify the biological processes and signaling pathways involved in IDD and LFH. The PI3K-AKT signaling pathway, advanced glycation endproducts-receptor for advanced glycation endproducts signaling pathway, p53 signaling pathway, and transforming growth factor-b signaling pathway were activated in disc degeneration. This review summarizes the recently identified DEPs, including prolargin, fibronectin 1, cartilage intermediate layer protein, cartilage oligomeric matrix protein, and collagen types I, II and IV, and their pathophysiological roles in degenerative spinal disorders, and may provide a deeper understanding of the pathological processes of human generative spinal disorders. The present review aimed to summarize significantly changed proteins in degenerative spinal disorders and provide a deeper understanding to prevent these diseases.