Cargando…
Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity
Infections caused by multidrug-resistant bacteria such as P. aeruginosa are important therapeutic complications. Piperacillin/Tazobactam is considered a safe antimicrobial agent. But we should not ignore the prevalence of resistant strains to this drug. In this work, a new polymeric micelle composed...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896493/ https://www.ncbi.nlm.nih.gov/pubmed/31797692 http://dx.doi.org/10.1080/10717544.2019.1693708 |
_version_ | 1783476790252011520 |
---|---|
author | Morteza, Milani Roya, Salehi Hamed, Hamishehkar Amir, Zarebkohan Abolfazl, Akbarzadeh |
author_facet | Morteza, Milani Roya, Salehi Hamed, Hamishehkar Amir, Zarebkohan Abolfazl, Akbarzadeh |
author_sort | Morteza, Milani |
collection | PubMed |
description | Infections caused by multidrug-resistant bacteria such as P. aeruginosa are important therapeutic complications. Piperacillin/Tazobactam is considered a safe antimicrobial agent. But we should not ignore the prevalence of resistant strains to this drug. In this work, a new polymeric micelle composed of Piperacillin/Tazobactam-loaded Poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PLGA-PEG) was developed to improve the antimicrobial performance of P/T. The SEM and TEM studies of PLGA-PEG micelle showed, semi-spherical morphology with a mean diameter of below 30 nm. Zeta potential results indicated that the surface charge of PLGA-PEG micelle was −2.98 mV, while after encapsulation of P/T, the surface charge decreases to −4.13 mV. Clinical strains of P. aeruginosa were isolated and their resistance pattern against different antibiotics was evaluated. The MIC of free and P/T -Loaded PLGA-PEG micelles was determined. Also, the effect of free or P/T micelle against minimal biofilm eradication concentration and motility inhibition was evaluated. The bacterial isolates were resistant to most common antibiotics. The MIC of the free drug form and micelle form ranged from 4 to 512 µg/ml and 2 to 256 µg/ml, respectively. Generally, micelle showed more effective antibiofilm activities, inhibition of bacterial motility and reducing the MIC than that free drug form. |
format | Online Article Text |
id | pubmed-6896493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-68964932019-12-13 Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity Morteza, Milani Roya, Salehi Hamed, Hamishehkar Amir, Zarebkohan Abolfazl, Akbarzadeh Drug Deliv Research Article Infections caused by multidrug-resistant bacteria such as P. aeruginosa are important therapeutic complications. Piperacillin/Tazobactam is considered a safe antimicrobial agent. But we should not ignore the prevalence of resistant strains to this drug. In this work, a new polymeric micelle composed of Piperacillin/Tazobactam-loaded Poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PLGA-PEG) was developed to improve the antimicrobial performance of P/T. The SEM and TEM studies of PLGA-PEG micelle showed, semi-spherical morphology with a mean diameter of below 30 nm. Zeta potential results indicated that the surface charge of PLGA-PEG micelle was −2.98 mV, while after encapsulation of P/T, the surface charge decreases to −4.13 mV. Clinical strains of P. aeruginosa were isolated and their resistance pattern against different antibiotics was evaluated. The MIC of free and P/T -Loaded PLGA-PEG micelles was determined. Also, the effect of free or P/T micelle against minimal biofilm eradication concentration and motility inhibition was evaluated. The bacterial isolates were resistant to most common antibiotics. The MIC of the free drug form and micelle form ranged from 4 to 512 µg/ml and 2 to 256 µg/ml, respectively. Generally, micelle showed more effective antibiofilm activities, inhibition of bacterial motility and reducing the MIC than that free drug form. Taylor & Francis 2019-12-04 /pmc/articles/PMC6896493/ /pubmed/31797692 http://dx.doi.org/10.1080/10717544.2019.1693708 Text en © 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Morteza, Milani Roya, Salehi Hamed, Hamishehkar Amir, Zarebkohan Abolfazl, Akbarzadeh Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title | Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title_full | Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title_fullStr | Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title_full_unstemmed | Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title_short | Synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
title_sort | synthesis and evaluation of polymeric micelle containing piperacillin/tazobactam for enhanced antibacterial activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896493/ https://www.ncbi.nlm.nih.gov/pubmed/31797692 http://dx.doi.org/10.1080/10717544.2019.1693708 |
work_keys_str_mv | AT mortezamilani synthesisandevaluationofpolymericmicellecontainingpiperacillintazobactamforenhancedantibacterialactivity AT royasalehi synthesisandevaluationofpolymericmicellecontainingpiperacillintazobactamforenhancedantibacterialactivity AT hamedhamishehkar synthesisandevaluationofpolymericmicellecontainingpiperacillintazobactamforenhancedantibacterialactivity AT amirzarebkohan synthesisandevaluationofpolymericmicellecontainingpiperacillintazobactamforenhancedantibacterialactivity AT abolfazlakbarzadeh synthesisandevaluationofpolymericmicellecontainingpiperacillintazobactamforenhancedantibacterialactivity |