Cargando…
Clinico-Radiological Efficacy of Posterior Instrumentation, Decompression, and Transpedicular Bone Grafting in Osteoporotic Burst Fracture Associated with Neurological Deficit
OBJECTIVE: The aim of this study is to evaluate clinico-radiological outcomes of posterior surgery (decompression + instrumentation + transpedicular bone graft) in osteoporotic burst fracture associated with neurological deficit [OFND]. MATERIALS AND METHODS: Forty patients with neurological deficit...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896640/ https://www.ncbi.nlm.nih.gov/pubmed/31903364 http://dx.doi.org/10.4103/ajns.AJNS_95_19 |
Sumario: | OBJECTIVE: The aim of this study is to evaluate clinico-radiological outcomes of posterior surgery (decompression + instrumentation + transpedicular bone graft) in osteoporotic burst fracture associated with neurological deficit [OFND]. MATERIALS AND METHODS: Forty patients with neurological deficit due to delayed osteoporotic vertebral collapse managed by posterior surgery (decompression + instrumentation + transpedicular bone graft) with minimum 2 years follow-up were included in the study. Approval from the Institutional Review Board was taken. Demographic data (age, sex, mode of injury, and the severity of osteoporosis); clinical parameters (Visual Analog Score [VAS], Oswestry Disability Index [ODI], Frankel grade), radiological parameters (local kyphosis), and surgical variables (blood loss, surgery duration, and intraoperative events) were recorded. Neurological worsening/improvement, complications, and implant failures were noted. RESULTS: Significant improvement was noted in VAS (preoperative 8.20 ± 0.65/postoperative 4.1 ± 0.64) and ODI (preoperative 76.54 ± 6.96/postoperative 30.5 ± 6.56). Complete neurological recovery was noted in 37 patients (Frankel Grade E), three patients remained nonambulatory (Frankel Grade C). Significant improvement was noted in local kyphosis angle (preoperative = 21.80 ± 2.70; postoperative 11.40 ± 1.80), with 10% loss of correction (2.5 ± 0.90) at final follow-up. Symptomatic implant failure was noted in two patients and proximal junctional failure in one patient requiring an extension of fixation. CONCLUSIONS: OFND can be managed with a single posterior-only surgery with significant improvement in neurology and functional scores of patients. Aggressive kyphosis correction is often not required and optimal correction of kyphosis is noticed due to prone-positioning alone. Transpedicular grafting is safe and simple alternative to cement augmentation or anterior surgery for collapsed vertebrae. |
---|