Cargando…
Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi
BACKGROUND: Spinibarbus hollandi is an economically important fish species in southern China. This fish is known to have nutritional and medicinal properties; however, its farming is limited by its slow growth rate. In the present study, we observed that a compensatory growth phenomenon could be ind...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896686/ https://www.ncbi.nlm.nih.gov/pubmed/31805873 http://dx.doi.org/10.1186/s12864-019-6345-2 |
_version_ | 1783476835207610368 |
---|---|
author | Yang, Yang Zhou, Huiqiang Hou, Liping Xing, Ke Shu, Hu |
author_facet | Yang, Yang Zhou, Huiqiang Hou, Liping Xing, Ke Shu, Hu |
author_sort | Yang, Yang |
collection | PubMed |
description | BACKGROUND: Spinibarbus hollandi is an economically important fish species in southern China. This fish is known to have nutritional and medicinal properties; however, its farming is limited by its slow growth rate. In the present study, we observed that a compensatory growth phenomenon could be induced by adequate refeeding following 7 days of fasting in S. hollandi. To understand the starvation response and compensatory growth mechanisms in this fish, the muscle transcriptomes of S. hollandi under control, fasting, and refeeding conditions were profiled using next-generation sequencing (NGS) techniques. RESULTS: More than 4.45 × 10(8) quality-filtered 150-base-pair Illumina reads were obtained from all nine muscle samples. De novo assemblies yielded a total of 156,735 unigenes, among which 142,918 (91.18%) could be annotated in at least one available database. After 7 days of fasting, 2422 differentially expressed genes were detected, including 1510 up-regulated genes and 912 down-regulated genes. Genes involved in fat, protein, and carbohydrate metabolism were significantly up-regulated, and genes associated with the cell cycle, DNA replication, and immune and cellular structures were inhibited during fasting. After refeeding, 84 up-regulated genes and 16 down-regulated genes were identified. Many genes encoding the components of myofibers were significantly up-regulated. Histological analysis of muscle verified the important role of muscle hypertrophy in compensatory growth. CONCLUSION: In the present work, we reported the transcriptome profiles of S. hollandi muscle under different conditions. During fasting, the genes involved in the mobilization of stored energy were up-regulated, while the genes associated with growth were down-regulated. After refeeding, muscle hypertrophy contributed to the recovery of growth. The results of this study may help to elucidate the mechanisms underlying the starvation response and compensatory growth. |
format | Online Article Text |
id | pubmed-6896686 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68966862019-12-11 Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi Yang, Yang Zhou, Huiqiang Hou, Liping Xing, Ke Shu, Hu BMC Genomics Research Article BACKGROUND: Spinibarbus hollandi is an economically important fish species in southern China. This fish is known to have nutritional and medicinal properties; however, its farming is limited by its slow growth rate. In the present study, we observed that a compensatory growth phenomenon could be induced by adequate refeeding following 7 days of fasting in S. hollandi. To understand the starvation response and compensatory growth mechanisms in this fish, the muscle transcriptomes of S. hollandi under control, fasting, and refeeding conditions were profiled using next-generation sequencing (NGS) techniques. RESULTS: More than 4.45 × 10(8) quality-filtered 150-base-pair Illumina reads were obtained from all nine muscle samples. De novo assemblies yielded a total of 156,735 unigenes, among which 142,918 (91.18%) could be annotated in at least one available database. After 7 days of fasting, 2422 differentially expressed genes were detected, including 1510 up-regulated genes and 912 down-regulated genes. Genes involved in fat, protein, and carbohydrate metabolism were significantly up-regulated, and genes associated with the cell cycle, DNA replication, and immune and cellular structures were inhibited during fasting. After refeeding, 84 up-regulated genes and 16 down-regulated genes were identified. Many genes encoding the components of myofibers were significantly up-regulated. Histological analysis of muscle verified the important role of muscle hypertrophy in compensatory growth. CONCLUSION: In the present work, we reported the transcriptome profiles of S. hollandi muscle under different conditions. During fasting, the genes involved in the mobilization of stored energy were up-regulated, while the genes associated with growth were down-regulated. After refeeding, muscle hypertrophy contributed to the recovery of growth. The results of this study may help to elucidate the mechanisms underlying the starvation response and compensatory growth. BioMed Central 2019-12-05 /pmc/articles/PMC6896686/ /pubmed/31805873 http://dx.doi.org/10.1186/s12864-019-6345-2 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Yang, Yang Zhou, Huiqiang Hou, Liping Xing, Ke Shu, Hu Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title | Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title_full | Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title_fullStr | Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title_full_unstemmed | Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title_short | Transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in Spinibarbus hollandi |
title_sort | transcriptional profiling of skeletal muscle reveals starvation response and compensatory growth in spinibarbus hollandi |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6896686/ https://www.ncbi.nlm.nih.gov/pubmed/31805873 http://dx.doi.org/10.1186/s12864-019-6345-2 |
work_keys_str_mv | AT yangyang transcriptionalprofilingofskeletalmusclerevealsstarvationresponseandcompensatorygrowthinspinibarbushollandi AT zhouhuiqiang transcriptionalprofilingofskeletalmusclerevealsstarvationresponseandcompensatorygrowthinspinibarbushollandi AT houliping transcriptionalprofilingofskeletalmusclerevealsstarvationresponseandcompensatorygrowthinspinibarbushollandi AT xingke transcriptionalprofilingofskeletalmusclerevealsstarvationresponseandcompensatorygrowthinspinibarbushollandi AT shuhu transcriptionalprofilingofskeletalmusclerevealsstarvationresponseandcompensatorygrowthinspinibarbushollandi |