Cargando…

A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules

In this paper an improved Computer Aided Design system can offer a second opinion to radiologists on early diagnosis of pulmonary nodules on CT (Computer Tomography) images. A Deep Convolutional Neural Network (DCNN) method is used for feature extraction and hybridize as combination of Convolutional...

Descripción completa

Detalles Bibliográficos
Autores principales: Kailasam, S Piramu, Sathik, M Mohamed
Formato: Online Artículo Texto
Lenguaje:English
Publicado: West Asia Organization for Cancer Prevention 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6897038/
https://www.ncbi.nlm.nih.gov/pubmed/30803208
http://dx.doi.org/10.31557/APJCP.2019.20.2.457
Descripción
Sumario:In this paper an improved Computer Aided Design system can offer a second opinion to radiologists on early diagnosis of pulmonary nodules on CT (Computer Tomography) images. A Deep Convolutional Neural Network (DCNN) method is used for feature extraction and hybridize as combination of Convolutional Neural Network (CNN), Histogram of Oriented Gradient (HOG), Extended Histogram of Oriented Gradients (ExHOG) and Local Binary Pattern (LBP). A combination of shape, texture, scaling, rotation, translation features extracted using HOG, LBP and CNN. The Homogeneous descriptors used to extract the feature of lung images from Lung Image Database Consortium (LIDC) are given to classifiers Support Vector Machine (SVM), K-Nearest Neighbour (KNN), Decision Tree and Random Forest to classify nodules and non-nodules. Experimental results demonstrate the effectiveness of the proposed method in terms of accuracy which gives best result than the competing methods.