Cargando…
A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules
In this paper an improved Computer Aided Design system can offer a second opinion to radiologists on early diagnosis of pulmonary nodules on CT (Computer Tomography) images. A Deep Convolutional Neural Network (DCNN) method is used for feature extraction and hybridize as combination of Convolutional...
Autores principales: | Kailasam, S Piramu, Sathik, M Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
West Asia Organization for Cancer Prevention
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6897038/ https://www.ncbi.nlm.nih.gov/pubmed/30803208 http://dx.doi.org/10.31557/APJCP.2019.20.2.457 |
Ejemplares similares
-
Classification of Pulmonary Nodules by Using Hybrid Features
por: Tartar, Ahmet, et al.
Publicado: (2013) -
A Novel Hybridized Feature Extraction Approach for Lung Nodule Classification Based on Transfer Learning Technique
por: Bruntha, P. Malin, et al.
Publicado: (2022) -
Classification of Benign and Malignant Lung Nodules Based on Deep Convolutional Network Feature Extraction
por: Lv, Enhui, et al.
Publicado: (2021) -
Multi-classification model incorporating radiomics and clinic-radiological features for predicting invasiveness and differentiation of pulmonary adenocarcinoma nodules
por: Sun, Haitao, et al.
Publicado: (2023) -
A classification of pulmonary nodules by CT scan
por: Bellomi, M
Publicado: (2012)