Cargando…

LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data

Linked-read sequencing provides long-range information on short-read sequencing data by barcoding reads originating from the same DNA molecule, and can improve detection and breakpoint identification for structural variants (SVs). Here we present LinkedSV for SV detection on linked-read sequencing d...

Descripción completa

Detalles Bibliográficos
Autores principales: Fang, Li, Kao, Charlly, Gonzalez, Michael V., Mafra, Fernanda A., Pellegrino da Silva, Renata, Li, Mingyao, Wenzel, Sören-Sebastian, Wimmer, Katharina, Hakonarson, Hakon, Wang, Kai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898185/
https://www.ncbi.nlm.nih.gov/pubmed/31811119
http://dx.doi.org/10.1038/s41467-019-13397-7
_version_ 1783476995820093440
author Fang, Li
Kao, Charlly
Gonzalez, Michael V.
Mafra, Fernanda A.
Pellegrino da Silva, Renata
Li, Mingyao
Wenzel, Sören-Sebastian
Wimmer, Katharina
Hakonarson, Hakon
Wang, Kai
author_facet Fang, Li
Kao, Charlly
Gonzalez, Michael V.
Mafra, Fernanda A.
Pellegrino da Silva, Renata
Li, Mingyao
Wenzel, Sören-Sebastian
Wimmer, Katharina
Hakonarson, Hakon
Wang, Kai
author_sort Fang, Li
collection PubMed
description Linked-read sequencing provides long-range information on short-read sequencing data by barcoding reads originating from the same DNA molecule, and can improve detection and breakpoint identification for structural variants (SVs). Here we present LinkedSV for SV detection on linked-read sequencing data. LinkedSV considers barcode overlapping and enriched fragment endpoints as signals to detect large SVs, while it leverages read depth, paired-end signals and local assembly to detect small SVs. Benchmarking studies demonstrate that LinkedSV outperforms existing tools, especially on exome data and on somatic SVs with low variant allele frequencies. We demonstrate clinical cases where LinkedSV identifies disease-causal SVs from linked-read exome sequencing data missed by conventional exome sequencing, and show examples where LinkedSV identifies SVs missed by high-coverage long-read sequencing. In summary, LinkedSV can detect SVs missed by conventional short-read and long-read sequencing approaches, and may resolve negative cases from clinical genome/exome sequencing studies.
format Online
Article
Text
id pubmed-6898185
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-68981852019-12-09 LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data Fang, Li Kao, Charlly Gonzalez, Michael V. Mafra, Fernanda A. Pellegrino da Silva, Renata Li, Mingyao Wenzel, Sören-Sebastian Wimmer, Katharina Hakonarson, Hakon Wang, Kai Nat Commun Article Linked-read sequencing provides long-range information on short-read sequencing data by barcoding reads originating from the same DNA molecule, and can improve detection and breakpoint identification for structural variants (SVs). Here we present LinkedSV for SV detection on linked-read sequencing data. LinkedSV considers barcode overlapping and enriched fragment endpoints as signals to detect large SVs, while it leverages read depth, paired-end signals and local assembly to detect small SVs. Benchmarking studies demonstrate that LinkedSV outperforms existing tools, especially on exome data and on somatic SVs with low variant allele frequencies. We demonstrate clinical cases where LinkedSV identifies disease-causal SVs from linked-read exome sequencing data missed by conventional exome sequencing, and show examples where LinkedSV identifies SVs missed by high-coverage long-read sequencing. In summary, LinkedSV can detect SVs missed by conventional short-read and long-read sequencing approaches, and may resolve negative cases from clinical genome/exome sequencing studies. Nature Publishing Group UK 2019-12-06 /pmc/articles/PMC6898185/ /pubmed/31811119 http://dx.doi.org/10.1038/s41467-019-13397-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Fang, Li
Kao, Charlly
Gonzalez, Michael V.
Mafra, Fernanda A.
Pellegrino da Silva, Renata
Li, Mingyao
Wenzel, Sören-Sebastian
Wimmer, Katharina
Hakonarson, Hakon
Wang, Kai
LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title_full LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title_fullStr LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title_full_unstemmed LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title_short LinkedSV for detection of mosaic structural variants from linked-read exome and genome sequencing data
title_sort linkedsv for detection of mosaic structural variants from linked-read exome and genome sequencing data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898185/
https://www.ncbi.nlm.nih.gov/pubmed/31811119
http://dx.doi.org/10.1038/s41467-019-13397-7
work_keys_str_mv AT fangli linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT kaocharlly linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT gonzalezmichaelv linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT mafrafernandaa linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT pellegrinodasilvarenata linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT limingyao linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT wenzelsorensebastian linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT wimmerkatharina linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT hakonarsonhakon linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata
AT wangkai linkedsvfordetectionofmosaicstructuralvariantsfromlinkedreadexomeandgenomesequencingdata