Cargando…
Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field
Three-dimensional(3D) Weyl semimetal(WSM) with linear energy spectra has attracted significant interest. Especially they have been observed experimentally in several solid materials with the breaking of inversion symmetry. Here we predict a new family of particle-hole([Formula: see text] ) invariant...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898696/ https://www.ncbi.nlm.nih.gov/pubmed/31811182 http://dx.doi.org/10.1038/s41598-019-54670-5 |
_version_ | 1783477020425977856 |
---|---|
author | Guo, Yaowu Lin, Zhi Zhao, Jia-Qiang Lou, Jie Chen, Yan |
author_facet | Guo, Yaowu Lin, Zhi Zhao, Jia-Qiang Lou, Jie Chen, Yan |
author_sort | Guo, Yaowu |
collection | PubMed |
description | Three-dimensional(3D) Weyl semimetal(WSM) with linear energy spectra has attracted significant interest. Especially they have been observed experimentally in several solid materials with the breaking of inversion symmetry. Here we predict a new family of particle-hole([Formula: see text] ) invariant 2D WSMs in the non-Abelian gauge field, which can emerge in the low energy bands being close to Fermi energy (dubbed Weyl-I) and the high energy bands being away from Fermi energy (dubbed Weyl-II), only when the time-reversal symmetry([Formula: see text] ) of the 2D Dirac semimetal is broken in the presence of in-plane Zeeman fields. Moreover, a 2D Dirac node can split into a pair of Weyl nodes showing the same Berry phase, and the 2D WSM, being protected by [Formula: see text] symmetry, exhibits four Weyl-I nodes, whose energies are invariant with the variation of the magnetic field. The corresponding Fermi velocity and Berry connection have been calculated. Based on the 2D WSMs, we also examine inhomogeneous pairings of attractive Fermi gases and find a new kind of the LO states with the beat frequency. This 2D WSM provides a realistic and promising platform for exploring and manipulating exotic Weyl physics, which may increase the experimental feasibility in the context of ultracold atoms. |
format | Online Article Text |
id | pubmed-6898696 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-68986962019-12-12 Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field Guo, Yaowu Lin, Zhi Zhao, Jia-Qiang Lou, Jie Chen, Yan Sci Rep Article Three-dimensional(3D) Weyl semimetal(WSM) with linear energy spectra has attracted significant interest. Especially they have been observed experimentally in several solid materials with the breaking of inversion symmetry. Here we predict a new family of particle-hole([Formula: see text] ) invariant 2D WSMs in the non-Abelian gauge field, which can emerge in the low energy bands being close to Fermi energy (dubbed Weyl-I) and the high energy bands being away from Fermi energy (dubbed Weyl-II), only when the time-reversal symmetry([Formula: see text] ) of the 2D Dirac semimetal is broken in the presence of in-plane Zeeman fields. Moreover, a 2D Dirac node can split into a pair of Weyl nodes showing the same Berry phase, and the 2D WSM, being protected by [Formula: see text] symmetry, exhibits four Weyl-I nodes, whose energies are invariant with the variation of the magnetic field. The corresponding Fermi velocity and Berry connection have been calculated. Based on the 2D WSMs, we also examine inhomogeneous pairings of attractive Fermi gases and find a new kind of the LO states with the beat frequency. This 2D WSM provides a realistic and promising platform for exploring and manipulating exotic Weyl physics, which may increase the experimental feasibility in the context of ultracold atoms. Nature Publishing Group UK 2019-12-06 /pmc/articles/PMC6898696/ /pubmed/31811182 http://dx.doi.org/10.1038/s41598-019-54670-5 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Guo, Yaowu Lin, Zhi Zhao, Jia-Qiang Lou, Jie Chen, Yan Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title | Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title_full | Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title_fullStr | Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title_full_unstemmed | Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title_short | Two-dimensional Tunable Dirac/Weyl Semimetal in Non-Abelian Gauge Field |
title_sort | two-dimensional tunable dirac/weyl semimetal in non-abelian gauge field |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898696/ https://www.ncbi.nlm.nih.gov/pubmed/31811182 http://dx.doi.org/10.1038/s41598-019-54670-5 |
work_keys_str_mv | AT guoyaowu twodimensionaltunablediracweylsemimetalinnonabeliangaugefield AT linzhi twodimensionaltunablediracweylsemimetalinnonabeliangaugefield AT zhaojiaqiang twodimensionaltunablediracweylsemimetalinnonabeliangaugefield AT loujie twodimensionaltunablediracweylsemimetalinnonabeliangaugefield AT chenyan twodimensionaltunablediracweylsemimetalinnonabeliangaugefield |