Cargando…
Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study
BACKGROUND: Crossover dilutes treatment effect and reduces statistical power of intention‐to‐treat analysis. We examined incidence and impact on cardiac surgery randomized controlled trial (RCT) outcomes of crossover from experimental to control interventions, or vice versa. METHODS AND RESULTS: MED...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898839/ https://www.ncbi.nlm.nih.gov/pubmed/31663420 http://dx.doi.org/10.1161/JAHA.119.013711 |
_version_ | 1783477037678198784 |
---|---|
author | Gaudino, Mario Fremes, Stephen E. Ruel, Marc Di Franco, Antonino Di Mauro, Michele Chikwe, Joanna Frati, Giacomo Girardi, Leonard N. Taggart, David P. Biondi‐Zoccai, Giuseppe |
author_facet | Gaudino, Mario Fremes, Stephen E. Ruel, Marc Di Franco, Antonino Di Mauro, Michele Chikwe, Joanna Frati, Giacomo Girardi, Leonard N. Taggart, David P. Biondi‐Zoccai, Giuseppe |
author_sort | Gaudino, Mario |
collection | PubMed |
description | BACKGROUND: Crossover dilutes treatment effect and reduces statistical power of intention‐to‐treat analysis. We examined incidence and impact on cardiac surgery randomized controlled trial (RCT) outcomes of crossover from experimental to control interventions, or vice versa. METHODS AND RESULTS: MEDLINE, EMBASE, and Cochrane Library were searched, and RCTs (≥100 patients) comparing ≥2 adult cardiac surgical interventions were included. Crossover from the initial treatment assignment and relative risks (RRs) for each trial's primary end point and mortality at longest available follow‐up were extracted. All RRs were calculated as >1 favored control group and <1 favored experimental arm. Primary outcome was the effect estimate for primary end point of each RCT, and secondary outcome was all‐cause mortality; both were appraised as RR at the longest follow‐up available. Sixty articles reporting on 47 RCTs (25 440 patients) were identified. Median crossover rate from experimental to control group was 7.0% (first quartile, 2.0%; third quartile, 9.7%), whereas from control to experimental group, the rate was 1.3% (first quartile, 0%; third quartile, 3.6%). RRs for primary end point and mortality were higher in RCTs with higher crossover rate from experimental to control group (RR, 1.01 [95% CI, 0.94–1.07] versus RR, 0.80 [95% CI, 0.66–0.97] and RR, 1.02 [95% CI, 0.95–1.11] versus RR, 0.94 [95% CI, 0.82–1.07], respectively). Crossover from control to experimental group did not alter effect estimates for primary end point or mortality (RR, 0.82 [95% CI, 0.63–1.05] versus RR, 0.95 [95% CI, 0.86–1.04] and RR, 0.88 [95% CI, 0.73–1.07] versus RR, 1.02 [95% CI, 0.95–1.09], respectively). CONCLUSIONS: Crossover from experimental to control group is associated with outcomes of cardiac surgery RCTs. Crossover should be minimized at designing stage and carefully appraised after study completion. |
format | Online Article Text |
id | pubmed-6898839 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68988392019-12-16 Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study Gaudino, Mario Fremes, Stephen E. Ruel, Marc Di Franco, Antonino Di Mauro, Michele Chikwe, Joanna Frati, Giacomo Girardi, Leonard N. Taggart, David P. Biondi‐Zoccai, Giuseppe J Am Heart Assoc Systematic Review and Meta‐analysis BACKGROUND: Crossover dilutes treatment effect and reduces statistical power of intention‐to‐treat analysis. We examined incidence and impact on cardiac surgery randomized controlled trial (RCT) outcomes of crossover from experimental to control interventions, or vice versa. METHODS AND RESULTS: MEDLINE, EMBASE, and Cochrane Library were searched, and RCTs (≥100 patients) comparing ≥2 adult cardiac surgical interventions were included. Crossover from the initial treatment assignment and relative risks (RRs) for each trial's primary end point and mortality at longest available follow‐up were extracted. All RRs were calculated as >1 favored control group and <1 favored experimental arm. Primary outcome was the effect estimate for primary end point of each RCT, and secondary outcome was all‐cause mortality; both were appraised as RR at the longest follow‐up available. Sixty articles reporting on 47 RCTs (25 440 patients) were identified. Median crossover rate from experimental to control group was 7.0% (first quartile, 2.0%; third quartile, 9.7%), whereas from control to experimental group, the rate was 1.3% (first quartile, 0%; third quartile, 3.6%). RRs for primary end point and mortality were higher in RCTs with higher crossover rate from experimental to control group (RR, 1.01 [95% CI, 0.94–1.07] versus RR, 0.80 [95% CI, 0.66–0.97] and RR, 1.02 [95% CI, 0.95–1.11] versus RR, 0.94 [95% CI, 0.82–1.07], respectively). Crossover from control to experimental group did not alter effect estimates for primary end point or mortality (RR, 0.82 [95% CI, 0.63–1.05] versus RR, 0.95 [95% CI, 0.86–1.04] and RR, 0.88 [95% CI, 0.73–1.07] versus RR, 1.02 [95% CI, 0.95–1.09], respectively). CONCLUSIONS: Crossover from experimental to control group is associated with outcomes of cardiac surgery RCTs. Crossover should be minimized at designing stage and carefully appraised after study completion. John Wiley and Sons Inc. 2019-10-30 /pmc/articles/PMC6898839/ /pubmed/31663420 http://dx.doi.org/10.1161/JAHA.119.013711 Text en © 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Systematic Review and Meta‐analysis Gaudino, Mario Fremes, Stephen E. Ruel, Marc Di Franco, Antonino Di Mauro, Michele Chikwe, Joanna Frati, Giacomo Girardi, Leonard N. Taggart, David P. Biondi‐Zoccai, Giuseppe Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title | Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title_full | Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title_fullStr | Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title_full_unstemmed | Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title_short | Prevalence and Impact of Treatment Crossover in Cardiac Surgery Randomized Trials: A Meta‐Epidemiologic Study |
title_sort | prevalence and impact of treatment crossover in cardiac surgery randomized trials: a meta‐epidemiologic study |
topic | Systematic Review and Meta‐analysis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6898839/ https://www.ncbi.nlm.nih.gov/pubmed/31663420 http://dx.doi.org/10.1161/JAHA.119.013711 |
work_keys_str_mv | AT gaudinomario prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT fremesstephene prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT ruelmarc prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT difrancoantonino prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT dimauromichele prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT chikwejoanna prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT fratigiacomo prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT girardileonardn prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT taggartdavidp prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy AT biondizoccaigiuseppe prevalenceandimpactoftreatmentcrossoverincardiacsurgeryrandomizedtrialsametaepidemiologicstudy |