Cargando…

The conserved metalloprotease invadolysin is present in invertebrate haemolymph and vertebrate blood

We identified invadolysin, a novel essential metalloprotease, for functions in chromosome structure, cell proliferation and migration. Invadolysin also plays an important metabolic role in insulin signalling and is the only protease known to localise to lipid droplets, the main lipid storage organel...

Descripción completa

Detalles Bibliográficos
Autores principales: Abhinav, Kanishk, Feng, Linda, Morrison, Emma, Jung, Yunshin, Dear, James, Takahashi, Satoru, Heck, Margarete M. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899020/
https://www.ncbi.nlm.nih.gov/pubmed/31615765
http://dx.doi.org/10.1242/bio.044073
Descripción
Sumario:We identified invadolysin, a novel essential metalloprotease, for functions in chromosome structure, cell proliferation and migration. Invadolysin also plays an important metabolic role in insulin signalling and is the only protease known to localise to lipid droplets, the main lipid storage organelle in the cell. In silico examination of the protein sequence of invadolysin predicts not only protease and lipase catalytic motifs, but also post-translational modifications and the secretion of invadolysin. Here we show that the protease motif of invadolysin is important for its role in lipid accumulation, but not in glycogen accumulation. The lipase motif does not appear to be functionally important for the accumulation of lipids or glycogen. Post-translational modifications likely contribute to modulating the level, localisation or activity of invadolysin. We identified a secreted form of invadolysin in the soluble fraction of invertebrate hemolymph (where we observe sexually dimorphic forms) and also vertebrate plasma, including in the extracellular vesicle fraction. Biochemical analysis for various post-translational modifications demonstrated that secreted invadolysin is both N- and O-glycosylated, but not apparently GPI-linked. The discovery of invadolysin in the extracellular milieu suggests a role for invadolysin in normal organismal physiology.