Cargando…
Fast multi‐component analysis using a joint sparsity constraint for MR fingerprinting
PURPOSE: To develop an efficient algorithm for multi‐component analysis of magnetic resonance fingerprinting (MRF) data without making a priori assumptions about the exact number of tissues or their relaxation properties. METHODS: Different tissues or components within a voxel are potentially separa...
Autores principales: | Nagtegaal, Martijn, Koken, Peter, Amthor, Thomas, Doneva, Mariya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899479/ https://www.ncbi.nlm.nih.gov/pubmed/31418918 http://dx.doi.org/10.1002/mrm.27947 |
Ejemplares similares
-
Multicomponent MR fingerprinting reconstruction using joint‐sparsity and low‐rank constraints
por: Nagtegaal, Martijn, et al.
Publicado: (2022) -
Water–fat Dixon cardiac magnetic resonance fingerprinting
por: Jaubert, Olivier, et al.
Publicado: (2019) -
Sparsity and locally low rank regularization for MR fingerprinting
por: Lima da Cruz, Gastão, et al.
Publicado: (2019) -
Cartesian MR fingerprinting in the eye at 7T using compressed sensing and matrix completion‐based reconstructions
por: Koolstra, Kirsten, et al.
Publicado: (2018) -
Highly accelerated vessel‐selective arterial spin labeling angiography using sparsity and smoothness constraints
por: Schauman, S. Sophie, et al.
Publicado: (2019)