Cargando…

Detecting within-host interactions from genotype combination prevalence data

Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and r...

Descripción completa

Detalles Bibliográficos
Autores principales: Alizon, Samuel, Murall, Carmen Lía, Saulnier, Emma, Sofonea, Mircea T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899502/
https://www.ncbi.nlm.nih.gov/pubmed/31257014
http://dx.doi.org/10.1016/j.epidem.2019.100349
_version_ 1783477143704961024
author Alizon, Samuel
Murall, Carmen Lía
Saulnier, Emma
Sofonea, Mircea T.
author_facet Alizon, Samuel
Murall, Carmen Lía
Saulnier, Emma
Sofonea, Mircea T.
author_sort Alizon, Samuel
collection PubMed
description Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity in behaviour. These simulations results offer promising applications to analyse large datasets of multiple infection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs).
format Online
Article
Text
id pubmed-6899502
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-68995022020-01-21 Detecting within-host interactions from genotype combination prevalence data Alizon, Samuel Murall, Carmen Lía Saulnier, Emma Sofonea, Mircea T. Epidemics Article Parasite genetic diversity can provide information on disease transmission dynamics but most mathematical and statistical frameworks ignore the exact combinations of genotypes in infections. We introduce and validate a new method that combines explicit epidemiological modelling of coinfections and regression-Approximate Bayesian Computing (ABC) to detect within-host interactions. Using a susceptible-infected-susceptible (SIS) model, we show that, if sufficiently strong, within-host parasite interactions can be detected from epidemiological data. We also show that, in this simple setting, this detection is robust even in the face of some level of host heterogeneity in behaviour. These simulations results offer promising applications to analyse large datasets of multiple infection prevalence data, such as those collected for genital infections by Human Papillomaviruses (HPVs). Elsevier 2019-12 /pmc/articles/PMC6899502/ /pubmed/31257014 http://dx.doi.org/10.1016/j.epidem.2019.100349 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alizon, Samuel
Murall, Carmen Lía
Saulnier, Emma
Sofonea, Mircea T.
Detecting within-host interactions from genotype combination prevalence data
title Detecting within-host interactions from genotype combination prevalence data
title_full Detecting within-host interactions from genotype combination prevalence data
title_fullStr Detecting within-host interactions from genotype combination prevalence data
title_full_unstemmed Detecting within-host interactions from genotype combination prevalence data
title_short Detecting within-host interactions from genotype combination prevalence data
title_sort detecting within-host interactions from genotype combination prevalence data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899502/
https://www.ncbi.nlm.nih.gov/pubmed/31257014
http://dx.doi.org/10.1016/j.epidem.2019.100349
work_keys_str_mv AT alizonsamuel detectingwithinhostinteractionsfromgenotypecombinationprevalencedata
AT murallcarmenlia detectingwithinhostinteractionsfromgenotypecombinationprevalencedata
AT saulnieremma detectingwithinhostinteractionsfromgenotypecombinationprevalencedata
AT sofoneamirceat detectingwithinhostinteractionsfromgenotypecombinationprevalencedata