Cargando…
Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899514/ https://www.ncbi.nlm.nih.gov/pubmed/31483557 http://dx.doi.org/10.1002/anie.201909904 |
_version_ | 1783477146513047552 |
---|---|
author | Menezes, Prashanth W. Walter, Carsten Hausmann, Jan Niklas Beltrán‐Suito, Rodrigo Schlesiger, Christopher Praetz, Sebastian Yu. Verchenko, Valeriy Shevelkov, Andrei V. Driess, Matthias |
author_facet | Menezes, Prashanth W. Walter, Carsten Hausmann, Jan Niklas Beltrán‐Suito, Rodrigo Schlesiger, Christopher Praetz, Sebastian Yu. Verchenko, Valeriy Shevelkov, Andrei V. Driess, Matthias |
author_sort | Menezes, Prashanth W. |
collection | PubMed |
description | For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnO(x) minerals with distinct structures and induced defects: birnessite δ‐MnO(2), feitknechtite β‐MnOOH, and hausmannite α‐Mn(3)O(4). The abundance and intrinsic stabilization of Mn(III)/Mn(IV) active sites in the three MnO(x) phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa(4) precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm(−2) with a durability of more than five days. |
format | Online Article Text |
id | pubmed-6899514 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68995142019-12-19 Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach Menezes, Prashanth W. Walter, Carsten Hausmann, Jan Niklas Beltrán‐Suito, Rodrigo Schlesiger, Christopher Praetz, Sebastian Yu. Verchenko, Valeriy Shevelkov, Andrei V. Driess, Matthias Angew Chem Int Ed Engl Communications For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnO(x) minerals with distinct structures and induced defects: birnessite δ‐MnO(2), feitknechtite β‐MnOOH, and hausmannite α‐Mn(3)O(4). The abundance and intrinsic stabilization of Mn(III)/Mn(IV) active sites in the three MnO(x) phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa(4) precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm(−2) with a durability of more than five days. John Wiley and Sons Inc. 2019-10-15 2019-11-11 /pmc/articles/PMC6899514/ /pubmed/31483557 http://dx.doi.org/10.1002/anie.201909904 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Menezes, Prashanth W. Walter, Carsten Hausmann, Jan Niklas Beltrán‐Suito, Rodrigo Schlesiger, Christopher Praetz, Sebastian Yu. Verchenko, Valeriy Shevelkov, Andrei V. Driess, Matthias Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title | Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title_full | Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title_fullStr | Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title_full_unstemmed | Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title_short | Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach |
title_sort | boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899514/ https://www.ncbi.nlm.nih.gov/pubmed/31483557 http://dx.doi.org/10.1002/anie.201909904 |
work_keys_str_mv | AT menezesprashanthw boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT waltercarsten boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT hausmannjanniklas boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT beltransuitorodrigo boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT schlesigerchristopher boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT praetzsebastian boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT yuverchenkovaleriy boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT shevelkovandreiv boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach AT driessmatthias boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach |