Cargando…

Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach

For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant...

Descripción completa

Detalles Bibliográficos
Autores principales: Menezes, Prashanth W., Walter, Carsten, Hausmann, Jan Niklas, Beltrán‐Suito, Rodrigo, Schlesiger, Christopher, Praetz, Sebastian, Yu. Verchenko, Valeriy, Shevelkov, Andrei V., Driess, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899514/
https://www.ncbi.nlm.nih.gov/pubmed/31483557
http://dx.doi.org/10.1002/anie.201909904
_version_ 1783477146513047552
author Menezes, Prashanth W.
Walter, Carsten
Hausmann, Jan Niklas
Beltrán‐Suito, Rodrigo
Schlesiger, Christopher
Praetz, Sebastian
Yu. Verchenko, Valeriy
Shevelkov, Andrei V.
Driess, Matthias
author_facet Menezes, Prashanth W.
Walter, Carsten
Hausmann, Jan Niklas
Beltrán‐Suito, Rodrigo
Schlesiger, Christopher
Praetz, Sebastian
Yu. Verchenko, Valeriy
Shevelkov, Andrei V.
Driess, Matthias
author_sort Menezes, Prashanth W.
collection PubMed
description For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnO(x) minerals with distinct structures and induced defects: birnessite δ‐MnO(2), feitknechtite β‐MnOOH, and hausmannite α‐Mn(3)O(4). The abundance and intrinsic stabilization of Mn(III)/Mn(IV) active sites in the three MnO(x) phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa(4) precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm(−2) with a durability of more than five days.
format Online
Article
Text
id pubmed-6899514
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-68995142019-12-19 Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach Menezes, Prashanth W. Walter, Carsten Hausmann, Jan Niklas Beltrán‐Suito, Rodrigo Schlesiger, Christopher Praetz, Sebastian Yu. Verchenko, Valeriy Shevelkov, Andrei V. Driess, Matthias Angew Chem Int Ed Engl Communications For the first time, the manganese gallide (MnGa(4)) served as an intermetallic precursor, which upon in situ electroconversion in alkaline media produced high‐performance and long‐term‐stable MnO(x)‐based electrocatalysts for water oxidation. Unexpectedly, its electrocorrosion (with the concomitant loss of Ga) leads simultaneously to three crystalline types of MnO(x) minerals with distinct structures and induced defects: birnessite δ‐MnO(2), feitknechtite β‐MnOOH, and hausmannite α‐Mn(3)O(4). The abundance and intrinsic stabilization of Mn(III)/Mn(IV) active sites in the three MnO(x) phases explains the superior efficiency and durability of the system for electrocatalytic water oxidation. After electrophoretic deposition of the MnGa(4) precursor on conductive nickel foam (NF), a low overpotential of 291 mV, comparable to that of precious‐metal‐based catalysts, could be achieved at a current density of 10 mA cm(−2) with a durability of more than five days. John Wiley and Sons Inc. 2019-10-15 2019-11-11 /pmc/articles/PMC6899514/ /pubmed/31483557 http://dx.doi.org/10.1002/anie.201909904 Text en © 2019 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Menezes, Prashanth W.
Walter, Carsten
Hausmann, Jan Niklas
Beltrán‐Suito, Rodrigo
Schlesiger, Christopher
Praetz, Sebastian
Yu. Verchenko, Valeriy
Shevelkov, Andrei V.
Driess, Matthias
Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title_full Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title_fullStr Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title_full_unstemmed Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title_short Boosting Water Oxidation through In Situ Electroconversion of Manganese Gallide: An Intermetallic Precursor Approach
title_sort boosting water oxidation through in situ electroconversion of manganese gallide: an intermetallic precursor approach
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899514/
https://www.ncbi.nlm.nih.gov/pubmed/31483557
http://dx.doi.org/10.1002/anie.201909904
work_keys_str_mv AT menezesprashanthw boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT waltercarsten boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT hausmannjanniklas boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT beltransuitorodrigo boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT schlesigerchristopher boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT praetzsebastian boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT yuverchenkovaleriy boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT shevelkovandreiv boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach
AT driessmatthias boostingwateroxidationthroughinsituelectroconversionofmanganesegallideanintermetallicprecursorapproach