Cargando…
Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis
Technological advances enable assaying multiplexed spatially resolved RNA and protein expression profiling of individual cells, thereby capturing molecular variations in physiological contexts. While these methods are increasingly accessible, computational approaches for studying the interplay of th...
Autores principales: | Arnol, Damien, Schapiro, Denis, Bodenmiller, Bernd, Saez-Rodriguez, Julio, Stegle, Oliver |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899515/ https://www.ncbi.nlm.nih.gov/pubmed/31577949 http://dx.doi.org/10.1016/j.celrep.2019.08.077 |
Ejemplares similares
-
Identifying temporal and spatial patterns of variation from multimodal data using MEFISTO
por: Velten, Britta, et al.
Publicado: (2022) -
Explainable multiview framework for dissecting spatial relationships from highly multiplexed data
por: Tanevski, Jovan, et al.
Publicado: (2022) -
Cancer-associated fibroblast classification in single-cell and spatial proteomics data
por: Cords, Lena, et al.
Publicado: (2023) -
Spatial-extent inference for testing variance components in reliability and heritability studies
por: Pan, Ruyi, et al.
Publicado: (2023) -
SpatialDE: identification of spatially variable genes
por: Svensson, Valentine, et al.
Publicado: (2018)