Cargando…
Qualitative Approach to Comparative Exposure in Alternatives Assessment
Most alternatives assessments (AAs) published to date are largely hazard‐based rankings, thereby ignoring potential differences in human and/or ecosystem exposures; as such, they may not represent a fully informed consideration of the advantages and disadvantages of possible alternatives. Building o...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899567/ https://www.ncbi.nlm.nih.gov/pubmed/29917303 http://dx.doi.org/10.1002/ieam.4070 |
Sumario: | Most alternatives assessments (AAs) published to date are largely hazard‐based rankings, thereby ignoring potential differences in human and/or ecosystem exposures; as such, they may not represent a fully informed consideration of the advantages and disadvantages of possible alternatives. Building on the 2014 US National Academy of Sciences recommendations to improve AA decisions by including comparative exposure assessment into AAs, the Health and Environmental Sciences Institute's (HESI) Sustainable Chemical Alternatives Technical Committee, which comprises scientists from academia, industry, government, and nonprofit organizations, developed a qualitative comparative exposure approach. Conducting such a comparison can screen for alternatives that are expected to have a higher or different routes of human or environmental exposure potential, which together with consideration of the hazard assessment, could trigger a higher tiered, more quantitative exposure assessment on the alternatives being considered, minimizing the likelihood of regrettable substitution. This article outlines an approach for including chemical ingredient‐ and product‐related exposure information in a qualitative comparison, including ingredient and product‐related parameters. A classification approach was developed for ingredient and product parameters to support comparisons between alternatives as well as a methodology to address exposure parameter relevance and data quality. The ingredient parameters include a range of physicochemical properties that can impact routes and magnitude of exposure, whereas the product parameters include aspects such as product‐specific exposure pathways, use information, accessibility, and disposal. Two case studies are used to demonstrate the application of the methodology. Key learnings and future research needs are summarized. Integr Environ Assess Manag 2018;00:000–000. © 2018 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC) |
---|