Cargando…
Image reconstruction for positron emission tomography based on patch‐based regularization and dictionary learning
PURPOSE: Positron emission tomography (PET) is an important tool for nuclear medical imaging. It has been widely used in clinical diagnosis, scientific research, and drug testing. PET is a kind of emission computed tomography. Its basic imaging principle is to use the positron annihilation radiation...
Autores principales: | Zhang, Wanhong, Gao, Juan, Yang, Yongfeng, Liang, Dong, Liu, Xin, Zheng, Hairong, Hu, Zhanli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899708/ https://www.ncbi.nlm.nih.gov/pubmed/31494950 http://dx.doi.org/10.1002/mp.13804 |
Ejemplares similares
-
A data‐driven respiratory motion estimation approach for PET based on time‐of‐flight weighted positron emission particle tracking
por: Tumpa, Tasmia Rahman, et al.
Publicado: (2020) -
Estimation of undistorted images in brain echo‐planar images with distortions using the conjugate gradient method with anatomical regularization
por: Kumazawa, Seiji, et al.
Publicado: (2022) -
Variability in CT lung-nodule quantification: Effects of dose reduction and reconstruction methods on density and texture based features
por: Lo, P., et al.
Publicado: (2016) -
Lung cancer diagnosis using deep attention‐based multiple instance learning and radiomics
por: Chen, Junhua, et al.
Publicado: (2022) -
Predicting the outcome of radiotherapy in brain metastasis by integrating the clinical and MRI‐based deep learning features
por: Jalalifar, Seyed Ali, et al.
Publicado: (2022)