Cargando…

Empirical evaluation of the implementation of the EMA guideline on missing data in confirmatory clinical trials: Specification of mixed models for longitudinal data in study protocols

In confirmatory clinical trials, the prespecification of the primary analysis model is a universally accepted scientific principle to allow strict control of the type I error. Consequently, both the ICH E9 guideline and the European Medicines Agency (EMA) guideline on missing data in confirmatory cl...

Descripción completa

Detalles Bibliográficos
Autores principales: Häckl, Sebastian, Koch, Armin, Lasch, Florian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899721/
https://www.ncbi.nlm.nih.gov/pubmed/31267673
http://dx.doi.org/10.1002/pst.1964
Descripción
Sumario:In confirmatory clinical trials, the prespecification of the primary analysis model is a universally accepted scientific principle to allow strict control of the type I error. Consequently, both the ICH E9 guideline and the European Medicines Agency (EMA) guideline on missing data in confirmatory clinical trials require that the primary analysis model is defined unambiguously. This requirement applies to mixed models for longitudinal data handling missing data implicitly. To evaluate the compliance with the EMA guideline, we evaluated the model specifications in those clinical study protocols from development phases II and III submitted between 2015 and 2018 to the Ethics Committee at Hannover Medical School under the German Medicinal Products Act, which planned to use a mixed model for longitudinal data in the confirmatory testing strategy. Overall, 39 trials from different types of sponsors and a wide range of therapeutic areas were evaluated. While nearly all protocols specify the fixed and random effects of the analysis model (95%), only 77% give the structure of the covariance matrix used for modeling the repeated measurements. Moreover, the testing method (36%), the estimation method (28%), the computation method (3%), and the fallback strategy (18%) are given by less than half the study protocols. Subgroup analyses indicate that these findings are universal and not specific to clinical trial phases or size of company. Altogether, our results show that guideline compliance is to various degrees poor and consequently, strict type I error rate control at the intended level is not guaranteed.