Cargando…
Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy
BACKGROUND: Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin‐2 reduces plasma triglycerides and may therefore be beneficial to reduce...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899829/ https://www.ncbi.nlm.nih.gov/pubmed/31251843 http://dx.doi.org/10.1111/joim.12951 |
_version_ | 1783477218029076480 |
---|---|
author | Saliba‐Gustafsson, P. Pedrelli, M. Gertow, K. Werngren, O. Janas, V. Pourteymour, S. Baldassarre, D. Tremoli, E. Veglia, F. Rauramaa, R. Smit, A.J. Giral, P. Kurl, S. Pirro, M. de Faire, U. Humphries, S.E. Hamsten, A. Gonçalves, I. Orho‐Melander, M. Franco‐Cereceda, A. Borén, J. Eriksson, P. Magné, J. Parini, P. Ehrenborg, E. |
author_facet | Saliba‐Gustafsson, P. Pedrelli, M. Gertow, K. Werngren, O. Janas, V. Pourteymour, S. Baldassarre, D. Tremoli, E. Veglia, F. Rauramaa, R. Smit, A.J. Giral, P. Kurl, S. Pirro, M. de Faire, U. Humphries, S.E. Hamsten, A. Gonçalves, I. Orho‐Melander, M. Franco‐Cereceda, A. Borén, J. Eriksson, P. Magné, J. Parini, P. Ehrenborg, E. |
author_sort | Saliba‐Gustafsson, P. |
collection | PubMed |
description | BACKGROUND: Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin‐2 reduces plasma triglycerides and may therefore be beneficial to reduce atherosclerosis development. OBJECTIVE: We sought to delineate putative beneficial effects of the Pro251 variant of perlipin‐2 on subclinical atherosclerosis and the mechanism by which it acts. METHODS: A pan‐European cohort of high‐risk individuals where carotid intima‐media thickness has been assessed was adopted. Human primary monocyte‐derived macrophages were prepared from whole blood from individuals recruited by perilipin‐2 genotype or from buffy coats from the Karolinska University hospital blood central. RESULTS: The Pro251 variant of perilipin‐2 is associated with decreased intima‐media thickness at baseline and over 30 months of follow‐up. Using human primary monocyte‐derived macrophages from carriers of the beneficial Pro251 variant, we show that this variant increases autophagy activity, cholesterol efflux and a controlled inflammatory response. Through extensive mechanistic studies, we demonstrate that increase in autophagy activity is accompanied with an increase in liver‐X‐receptor (LXR) activity and that LXR and autophagy reciprocally activate each other in a feed‐forward loop, regulated by CYP27A1 and 27OH‐cholesterol. CONCLUSIONS: For the first time, we show that perilipin‐2 affects susceptibility to human atherosclerosis through activation of autophagy and stimulation of cholesterol efflux. We demonstrate that perilipin‐2 modulates levels of the LXR ligand 27OH‐cholesterol and initiates a feed‐forward loop where LXR and autophagy reciprocally activate each other; the mechanism by which perilipin‐2 exerts its beneficial effects on subclinical atherosclerosis. |
format | Online Article Text |
id | pubmed-6899829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68998292019-12-19 Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy Saliba‐Gustafsson, P. Pedrelli, M. Gertow, K. Werngren, O. Janas, V. Pourteymour, S. Baldassarre, D. Tremoli, E. Veglia, F. Rauramaa, R. Smit, A.J. Giral, P. Kurl, S. Pirro, M. de Faire, U. Humphries, S.E. Hamsten, A. Gonçalves, I. Orho‐Melander, M. Franco‐Cereceda, A. Borén, J. Eriksson, P. Magné, J. Parini, P. Ehrenborg, E. J Intern Med Original Articles BACKGROUND: Hyperlipidaemia is a major risk factor for cardiovascular disease, and atherosclerosis is the underlying cause of both myocardial infarction and stroke. We have previously shown that the Pro251 variant of perilipin‐2 reduces plasma triglycerides and may therefore be beneficial to reduce atherosclerosis development. OBJECTIVE: We sought to delineate putative beneficial effects of the Pro251 variant of perlipin‐2 on subclinical atherosclerosis and the mechanism by which it acts. METHODS: A pan‐European cohort of high‐risk individuals where carotid intima‐media thickness has been assessed was adopted. Human primary monocyte‐derived macrophages were prepared from whole blood from individuals recruited by perilipin‐2 genotype or from buffy coats from the Karolinska University hospital blood central. RESULTS: The Pro251 variant of perilipin‐2 is associated with decreased intima‐media thickness at baseline and over 30 months of follow‐up. Using human primary monocyte‐derived macrophages from carriers of the beneficial Pro251 variant, we show that this variant increases autophagy activity, cholesterol efflux and a controlled inflammatory response. Through extensive mechanistic studies, we demonstrate that increase in autophagy activity is accompanied with an increase in liver‐X‐receptor (LXR) activity and that LXR and autophagy reciprocally activate each other in a feed‐forward loop, regulated by CYP27A1 and 27OH‐cholesterol. CONCLUSIONS: For the first time, we show that perilipin‐2 affects susceptibility to human atherosclerosis through activation of autophagy and stimulation of cholesterol efflux. We demonstrate that perilipin‐2 modulates levels of the LXR ligand 27OH‐cholesterol and initiates a feed‐forward loop where LXR and autophagy reciprocally activate each other; the mechanism by which perilipin‐2 exerts its beneficial effects on subclinical atherosclerosis. John Wiley and Sons Inc. 2019-07-29 2019-12 /pmc/articles/PMC6899829/ /pubmed/31251843 http://dx.doi.org/10.1111/joim.12951 Text en © 2019 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Saliba‐Gustafsson, P. Pedrelli, M. Gertow, K. Werngren, O. Janas, V. Pourteymour, S. Baldassarre, D. Tremoli, E. Veglia, F. Rauramaa, R. Smit, A.J. Giral, P. Kurl, S. Pirro, M. de Faire, U. Humphries, S.E. Hamsten, A. Gonçalves, I. Orho‐Melander, M. Franco‐Cereceda, A. Borén, J. Eriksson, P. Magné, J. Parini, P. Ehrenborg, E. Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title | Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title_full | Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title_fullStr | Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title_full_unstemmed | Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title_short | Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy |
title_sort | subclinical atherosclerosis and its progression are modulated by plin2 through a feed‐forward loop between lxr and autophagy |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899829/ https://www.ncbi.nlm.nih.gov/pubmed/31251843 http://dx.doi.org/10.1111/joim.12951 |
work_keys_str_mv | AT salibagustafssonp subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT pedrellim subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT gertowk subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT werngreno subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT janasv subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT pourteymours subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT baldassarred subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT tremolie subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT vegliaf subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT rauramaar subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT smitaj subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT giralp subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT kurls subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT pirrom subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT defaireu subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT humphriesse subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT hamstena subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT goncalvesi subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT orhomelanderm subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT francocerecedaa subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT borenj subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT erikssonp subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT magnej subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT parinip subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy AT ehrenborge subclinicalatherosclerosisanditsprogressionaremodulatedbyplin2throughafeedforwardloopbetweenlxrandautophagy |