Cargando…
Multiple‐Porphyrin Functionalized Hexabenzocoronenes
Porphyrin–hexabenzocoronene architectures serve as good model compounds to study light‐harvesting systems. Herein, the synthesis of porphyrin functionalized hexa‐peri‐hexabenzocoronenes (HBCs), in which one or more porphyrins are covalently linked to a central HBC core, is presented. A series of hex...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6899994/ https://www.ncbi.nlm.nih.gov/pubmed/31429504 http://dx.doi.org/10.1002/chem.201903113 |
Sumario: | Porphyrin–hexabenzocoronene architectures serve as good model compounds to study light‐harvesting systems. Herein, the synthesis of porphyrin functionalized hexa‐peri‐hexabenzocoronenes (HBCs), in which one or more porphyrins are covalently linked to a central HBC core, is presented. A series of hexaphenylbenzenes (HPBs) was prepared and reacted under oxidative coupling conditions. The transformation to the respective HBC derivatives worked well with mono‐ and tri‐porphyrin‐substituted HPBs. However, if more porphyrins are attached to the HPB core, Scholl oxidations are hampered or completely suppressed. Hence, a change of the synthetic strategy was necessary to first preform the HBC core, followed by the introduction of the porphyrins. All products were fully characterized, including, if possible, single‐crystal XRD. UV/Vis absorption spectra of porphyrin‐HBCs showed, depending on the number of porphyrins as well as with respect to the substitution pattern, variations in their spectral features with strong distortions of the porphyrins’ B‐band. |
---|