Cargando…
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
PURPOSE: In order to attain anatomical models, surgical guides and implants for computer‐assisted surgery, accurate segmentation of bony structures in cone‐beam computed tomography (CBCT) scans is required. However, this image segmentation step is often impeded by metal artifacts. Therefore, this st...
Autores principales: | Minnema, Jordi, van Eijnatten, Maureen, Hendriksen, Allard A., Liberton, Niels, Pelt, Daniël M., Batenburg, Kees Joost, Forouzanfar, Tymour, Wolff, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900023/ https://www.ncbi.nlm.nih.gov/pubmed/31463937 http://dx.doi.org/10.1002/mp.13793 |
Ejemplares similares
-
A review on the application of deep learning for CT reconstruction, bone segmentation and surgical planning in oral and maxillofacial surgery
por: Minnema, Jordi, et al.
Publicado: (2022) -
Automatic detection of contouring errors using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2019) -
Automatic contouring system for cervical cancer using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2020) -
Technical Note: 4D cone‐beam CT reconstruction from sparse‐view CBCT data for daily motion assessment in pencil beam scanned proton therapy (PBS‐PT)
por: den Otter, Lydia A., et al.
Publicado: (2020) -
Transfer learning for data‐efficient abdominal muscle segmentation with convolutional neural networks
por: McSweeney, Dónal M., et al.
Publicado: (2022)