Cargando…
Skeletal muscle unloading results in increased mitophagy and decreased mitochondrial biogenesis regulation
INTRODUCTION: Physical inactivity significantly contributes to loss of muscle mass and performance in bed‐bound patients. Loss of skeletal muscle mitochondrial content has been well‐established in muscle unloading models, but the underlying molecular mechanism remains unclear. We hypothesized that a...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900132/ https://www.ncbi.nlm.nih.gov/pubmed/31495926 http://dx.doi.org/10.1002/mus.26702 |
Sumario: | INTRODUCTION: Physical inactivity significantly contributes to loss of muscle mass and performance in bed‐bound patients. Loss of skeletal muscle mitochondrial content has been well‐established in muscle unloading models, but the underlying molecular mechanism remains unclear. We hypothesized that apparent unloading‐induced loss of muscle mitochondrial content is preceded by increased mitophagy‐ and decreased mitochondrial biogenesis‐signaling during the early stages of unloading. METHODS: We analyzed a comprehensive set of molecular markers involved in mitochondrial‐autophagy, −biogenesis, −dynamics, and ‐content, in the gastrocnemius muscle of C57BL/6J mice subjected to 0‐ and 3‐days hind limb suspension, and in biopsies from human vastus lateralis muscle obtained before and after 7 days of one‐leg immobilization. RESULTS: In both mice and men, short‐term skeletal muscle unloading results in molecular marker patterns indicative of increased receptor‐mediated mitophagy and decreased mitochondrial biogenesis regulation, before apparent loss of mitochondrial content. DISCUSSION: These results emphasize the early‐onset of skeletal muscle disuse‐induced mitochondrial remodeling. |
---|