Cargando…
Co-Administration of Curcumin and Bromocriptine Nano-liposomes for Induction of Apoptosis in Lung Cancer Cells
BACKGROUND: In recent years, nanotechnology with modern advances in the macromolecular design of nano-carriers has proved to be helpful in the development of drugs delivery systems. This research represents a novel co-administration of nano-vehicles, known as liposomes. Liposomes efficiently encapsu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pasteur Institute of Iran
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900482/ https://www.ncbi.nlm.nih.gov/pubmed/31454860 http://dx.doi.org/10.29252/ibj.24.1.24 |
Sumario: | BACKGROUND: In recent years, nanotechnology with modern advances in the macromolecular design of nano-carriers has proved to be helpful in the development of drugs delivery systems. This research represents a novel co-administration of nano-vehicles, known as liposomes. Liposomes efficiently encapsulate curcumin and BR in a polymer structure, which results in enhanced aqueous solubility of the mentioned hydrophobic agents and higher bioavailability of the drugs. METHODS: Preparation of curcumin and BR liposomes were carried out by the thin film method, and the amounts of purified drug and its release were analyzed. After dose determination, the human lung cancer cells (QU-DB) were exposed to BR and curcumin liposomes for 12, 24, and 48 h. Then the viability and apoptosis assays were carried out by using MTT and flow cytometry technique, respectively. RESULTS: In this research, in vitro anti-cancer effects of former nano-formulations on lung cancer cells was confirmed, and no cytotoxicity effects of these nano-preparations were observed in the normal cells (HFLF-PI5). CONCLUSION: Our findings suggest the nano-liposomal drugs as effective anti-cancer agents; however, additional clinical examinations are required. |
---|