Cargando…
Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques
Most pharmaceutical formulation developments are complex and ideal formulations are generally obtained after extensive experimentation. Machine learning is increasingly advancing many aspects in modern society and has achieved significant success in multiple subjects. Current research demonstrated t...
Autores principales: | Zhao, Qianqian, Ye, Zhuyifan, Su, Yan, Ouyang, Defang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900559/ https://www.ncbi.nlm.nih.gov/pubmed/31867169 http://dx.doi.org/10.1016/j.apsb.2019.04.004 |
Ejemplares similares
-
Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms
por: Ye, Zhuyifan, et al.
Publicado: (2021) -
Predicting liposome formulations by the integrated machine learning and molecular modeling approaches
por: Han, Run, et al.
Publicado: (2023) -
Deep learning for in vitro prediction of pharmaceutical formulations
por: Yang, Yilong, et al.
Publicado: (2019) -
Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm
por: Wang, Wei, et al.
Publicado: (2022) -
Investigation of molecular aggregation mechanism of glipizide/cyclodextrin complexation by combined experimental and molecular modeling approaches
por: Huang, Tianhe, et al.
Publicado: (2019)