Cargando…

HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2

Wnt signaling through both canonical and noncanonical pathways plays a core role in development. Dysregulation of these pathways often causes cancer development and progression. Although the pathways independently contribute to the core processes, a regulatory molecule that commonly activates both o...

Descripción completa

Detalles Bibliográficos
Autores principales: You, Bo-Hyun, Yoon, Jung-Ho, Kang, Hoin, Lee, Eun Kyung, Lee, Sang Kil, Nam, Jin-Wu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900598/
https://www.ncbi.nlm.nih.gov/pubmed/31732666
http://dx.doi.org/10.1073/pnas.1912126116
Descripción
Sumario:Wnt signaling through both canonical and noncanonical pathways plays a core role in development. Dysregulation of these pathways often causes cancer development and progression. Although the pathways independently contribute to the core processes, a regulatory molecule that commonly activates both of them has not yet been reported. Here, we describe a long noncoding RNA (lncRNA), HERES, that epigenetically regulates both canonical and noncanonical Wnt signaling pathways in esophageal squamous cell carcinoma (ESCC). For this study, we performed RNA-seq analysis on Korean ESCC patients and validated these results on a larger ESCC cohort to identify lncRNAs commonly dysregulated in ESCCs. Six of the dysregulated lncRNAs were significantly associated with the clinical outcomes of ESCC patients and defined 4 ESCC subclasses with different prognoses. HERES reduction repressed cell proliferation, migration, invasion, and colony formation in ESCC cell lines and tumor growth in xenograft models. HERES appears to be a transacting factor that regulates CACNA2D3, SFRP2, and CXXC4 simultaneously to activate Wnt signaling pathways through an interaction with EZH2 via its G-quadruple structure-like motif. Our results suggest that HERES holds substantial potential as a therapeutic target for ESCC and probably other cancers caused by defects in Wnt signaling pathways.