Cargando…
Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages
[Image: see text] Here we report a new supramolecular strategy for the selective separation of specific polycyclic aromatic hydrocarbons (PAHs) from mixtures. The use of a triethylene glycol-functionalized formylpyridine subcomponent allowed the construction of an Fe(II)(4)L(4) tetrahedron 1 that wa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900757/ https://www.ncbi.nlm.nih.gov/pubmed/31729877 http://dx.doi.org/10.1021/jacs.9b10741 |
Sumario: | [Image: see text] Here we report a new supramolecular strategy for the selective separation of specific polycyclic aromatic hydrocarbons (PAHs) from mixtures. The use of a triethylene glycol-functionalized formylpyridine subcomponent allowed the construction of an Fe(II)(4)L(4) tetrahedron 1 that was capable of transferring between water and nitromethane layers, driven by anion metathesis. Cage 1 selectively encapsulated coronene from among a mixture of eight different types of PAHs in nitromethane, bringing it into a new nitromethane phase by transiting through an intermediate water phase. The bound coronene was released from 1 upon addition of benzene, and both the cage and the purified coronene could be separated via further phase separation. |
---|