Cargando…
Development of an in vivo model to study clonal lineage relationships in hematopoietic cells using Brainbow2.1/Confetti mice
Hematopoietic stem cells maintain the homeostasis of all blood cell progeny during development and repopulation-demanding events. To study the lineage relationships during hematopoiesis, increasingly complex cell tracing models are being developed. In this study, we describe adaptations to the origi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Future Science Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6900974/ https://www.ncbi.nlm.nih.gov/pubmed/31827896 http://dx.doi.org/10.2144/fsoa-2019-0083 |
Sumario: | Hematopoietic stem cells maintain the homeostasis of all blood cell progeny during development and repopulation-demanding events. To study the lineage relationships during hematopoiesis, increasingly complex cell tracing models are being developed. In this study, we describe adaptations to the original R26R-Confetti mouse model, which subsequently offers a relatively easy approach to study low complexity clonality during hematopoiesis, with special focus on B and T lymphocyte development. This protocol employs spatiotemporal Cre expression controlled by gammaretroviral transduction for efficient fluorescent protein cell marking. Transplantation of fluorescently marked Lin(-) cKit(+) hematopoietic progenitor cells into Rag1(-/-) mice, resulted in the visualization of differentially contributing stem cell clones to various lineages. Our methodology is useful to study questions in fundamental and preclinical hematopoietic research and in vivo B- and T-cell development. |
---|