Cargando…

Synthetic gel structures in soils for sustainable potato farming

Anti-pathogenic protection of potatoes remains one of the most pressing problems of sustainable agronomy and plant protection. For this purpose, we propose to use a new type of synthetic hydrogels filled with amphiphilic recipients (dispersed peat, humates) and modern plant protection products. We a...

Descripción completa

Detalles Bibliográficos
Autores principales: Smagin, Andrey, Sadovnikova, Nadezhda, Smagina, Marina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901477/
https://www.ncbi.nlm.nih.gov/pubmed/31819145
http://dx.doi.org/10.1038/s41598-019-55205-8
Descripción
Sumario:Anti-pathogenic protection of potatoes remains one of the most pressing problems of sustainable agronomy and plant protection. For this purpose, we propose to use a new type of synthetic hydrogels filled with amphiphilic recipients (dispersed peat, humates) and modern plant protection products. We assumed that the introduction of swollen gel structures into the rhizosphere of potatoes will allow us: to optimize the water supply and productivity of potatoes; to protect the fertile layer and potato tubers from the main pathogens; to fix modern plant protection products in the rhizosphere, keeping them from leaching and entering the environment. Preliminary laboratory experiments tested the anti-microbial activity of gel structures, as well as their water retention, dispersity and hydraulic conductivity with subsequent computer modeling of the water exchange and root uptake in the system of “soil-gel-potato”. Field trials were carried out in humid (European Russia) and arid (Uzbekistan) conditions under the atmospheric precipitation and irrigation on different soils and potato varieties with instrumental monitoring of environment, potato growth and quality. All experimental results confirmed the high efficiency of water-accumulative and plant protective synthetic gel structures. Their usage sufficiently (up to 6–15 t/hct) increases the potato yield with 1.3–2 times water saving, complete retention of agrochemicals in the rizosphere, and its actually total protection against major potato pathogens, including late blight (Phytophthora infestans).