Cargando…
Bio-Inspired Active Skins for Surface Morphing
Mechanical metamaterials that leverage precise geometrical designs and imperfections to induce unique material behavior have garnered significant attention. This study proposes a Bio-Inspired Active Skin (BIAS) as a new class of instability-induced morphable structures, where selective out-of-plane...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901544/ https://www.ncbi.nlm.nih.gov/pubmed/31819136 http://dx.doi.org/10.1038/s41598-019-55163-1 |
Sumario: | Mechanical metamaterials that leverage precise geometrical designs and imperfections to induce unique material behavior have garnered significant attention. This study proposes a Bio-Inspired Active Skin (BIAS) as a new class of instability-induced morphable structures, where selective out-of-plane material deformations can be pre-programmed during design and activated by in-plane strains. The deformation mechanism of a unit cell geometrical design is analyzed to identify how the introduction of hinge-like notches or instabilities, versus their pristine counterparts, can pave way for controlling bulk BIAS behavior. Two-dimensional arrays of repeating unit cells were fabricated, with notches implemented at key locations throughout the structure, to harvest the instability-induced surface features for applications such as camouflage, surface morphing, and soft robotic grippers. |
---|