Cargando…
Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901596/ https://www.ncbi.nlm.nih.gov/pubmed/31849989 http://dx.doi.org/10.3389/fimmu.2019.02824 |
_version_ | 1783477532218097664 |
---|---|
author | Granger, Vanessa Peyneau, Marine Chollet-Martin, Sylvie de Chaisemartin, Luc |
author_facet | Granger, Vanessa Peyneau, Marine Chollet-Martin, Sylvie de Chaisemartin, Luc |
author_sort | Granger, Vanessa |
collection | PubMed |
description | Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies. |
format | Online Article Text |
id | pubmed-6901596 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69015962019-12-17 Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work Granger, Vanessa Peyneau, Marine Chollet-Martin, Sylvie de Chaisemartin, Luc Front Immunol Immunology Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies. Frontiers Media S.A. 2019-12-03 /pmc/articles/PMC6901596/ /pubmed/31849989 http://dx.doi.org/10.3389/fimmu.2019.02824 Text en Copyright © 2019 Granger, Peyneau, Chollet-Martin and de Chaisemartin. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Granger, Vanessa Peyneau, Marine Chollet-Martin, Sylvie de Chaisemartin, Luc Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title | Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title_full | Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title_fullStr | Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title_full_unstemmed | Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title_short | Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work |
title_sort | neutrophil extracellular traps in autoimmunity and allergy: immune complexes at work |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901596/ https://www.ncbi.nlm.nih.gov/pubmed/31849989 http://dx.doi.org/10.3389/fimmu.2019.02824 |
work_keys_str_mv | AT grangervanessa neutrophilextracellulartrapsinautoimmunityandallergyimmunecomplexesatwork AT peyneaumarine neutrophilextracellulartrapsinautoimmunityandallergyimmunecomplexesatwork AT cholletmartinsylvie neutrophilextracellulartrapsinautoimmunityandallergyimmunecomplexesatwork AT dechaisemartinluc neutrophilextracellulartrapsinautoimmunityandallergyimmunecomplexesatwork |