Cargando…
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
OBJECTIVE: Electroencephalogram (EEG) based brain–computer interfaces (BCI) in motor imagery (MI) have developed rapidly in recent years. A reliable feature extraction method is essential because of a low signal-to-noise ratio (SNR) and time-dependent covariates of EEG signals. Because of efficient...
Autores principales: | Wu, Hao, Niu, Yi, Li, Fu, Li, Yuchen, Fu, Boxun, Shi, Guangming, Dong, Minghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6901997/ https://www.ncbi.nlm.nih.gov/pubmed/31849587 http://dx.doi.org/10.3389/fnins.2019.01275 |
Ejemplares similares
-
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information
por: Kumar, Shiu, et al.
Publicado: (2017) -
Overlapping filter bank convolutional neural network for multisubject multicategory motor imagery brain-computer interface
por: Luo, Jing, et al.
Publicado: (2023) -
Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network
por: Chang, Zhanyuan, et al.
Publicado: (2022) -
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023)