Cargando…
Convolutional neural network model to predict causal risk factors that share complex regulatory features
Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural net...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902027/ https://www.ncbi.nlm.nih.gov/pubmed/31598692 http://dx.doi.org/10.1093/nar/gkz868 |
_version_ | 1783477608813428736 |
---|---|
author | Lee, Taeyeop Sung, Min Kyung Lee, Seulkee Yang, Woojin Oh, Jaeho Kim, Jeong Yeon Hwang, Seongwon Ban, Hyo-Jeong Choi, Jung Kyoon |
author_facet | Lee, Taeyeop Sung, Min Kyung Lee, Seulkee Yang, Woojin Oh, Jaeho Kim, Jeong Yeon Hwang, Seongwon Ban, Hyo-Jeong Choi, Jung Kyoon |
author_sort | Lee, Taeyeop |
collection | PubMed |
description | Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural network framework for combinatorial, nonlinear modeling of complex patterns shared by risk variants scattered among multiple associated loci. When applied for major psychiatric disorders and autoimmune diseases, neural and immune features, respectively, exhibited high explanatory power while reflecting the pathophysiology of the relevant disease. The predicted causal variants were concentrated in active regulatory regions of relevant cell types and tended to be in physical contact with transcription factors while residing in evolutionarily conserved regions and resulting in expression changes of genes related to the given disease. We demonstrate some examples of novel candidate causal variants and associated genes. Our method is expected to contribute to the identification and functional interpretation of potential causal noncoding variants in post-GWAS analyses. |
format | Online Article Text |
id | pubmed-6902027 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-69020272019-12-16 Convolutional neural network model to predict causal risk factors that share complex regulatory features Lee, Taeyeop Sung, Min Kyung Lee, Seulkee Yang, Woojin Oh, Jaeho Kim, Jeong Yeon Hwang, Seongwon Ban, Hyo-Jeong Choi, Jung Kyoon Nucleic Acids Res Methods Online Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural network framework for combinatorial, nonlinear modeling of complex patterns shared by risk variants scattered among multiple associated loci. When applied for major psychiatric disorders and autoimmune diseases, neural and immune features, respectively, exhibited high explanatory power while reflecting the pathophysiology of the relevant disease. The predicted causal variants were concentrated in active regulatory regions of relevant cell types and tended to be in physical contact with transcription factors while residing in evolutionarily conserved regions and resulting in expression changes of genes related to the given disease. We demonstrate some examples of novel candidate causal variants and associated genes. Our method is expected to contribute to the identification and functional interpretation of potential causal noncoding variants in post-GWAS analyses. Oxford University Press 2019-12-16 2019-10-10 /pmc/articles/PMC6902027/ /pubmed/31598692 http://dx.doi.org/10.1093/nar/gkz868 Text en © The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Lee, Taeyeop Sung, Min Kyung Lee, Seulkee Yang, Woojin Oh, Jaeho Kim, Jeong Yeon Hwang, Seongwon Ban, Hyo-Jeong Choi, Jung Kyoon Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title | Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title_full | Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title_fullStr | Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title_full_unstemmed | Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title_short | Convolutional neural network model to predict causal risk factors that share complex regulatory features |
title_sort | convolutional neural network model to predict causal risk factors that share complex regulatory features |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902027/ https://www.ncbi.nlm.nih.gov/pubmed/31598692 http://dx.doi.org/10.1093/nar/gkz868 |
work_keys_str_mv | AT leetaeyeop convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT sungminkyung convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT leeseulkee convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT yangwoojin convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT ohjaeho convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT kimjeongyeon convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT hwangseongwon convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT banhyojeong convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures AT choijungkyoon convolutionalneuralnetworkmodeltopredictcausalriskfactorsthatsharecomplexregulatoryfeatures |