Cargando…
Convolutional neural network model to predict causal risk factors that share complex regulatory features
Major progress in disease genetics has been made through genome-wide association studies (GWASs). One of the key tasks for post-GWAS analyses is to identify causal noncoding variants with regulatory function. Here, on the basis of >2000 functional features, we developed a convolutional neural net...
Autores principales: | Lee, Taeyeop, Sung, Min Kyung, Lee, Seulkee, Yang, Woojin, Oh, Jaeho, Kim, Jeong Yeon, Hwang, Seongwon, Ban, Hyo-Jeong, Choi, Jung Kyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902027/ https://www.ncbi.nlm.nih.gov/pubmed/31598692 http://dx.doi.org/10.1093/nar/gkz868 |
Ejemplares similares
-
DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences
por: Quang, Daniel, et al.
Publicado: (2016) -
Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts
por: Ahn, Jin-Ho, et al.
Publicado: (2007) -
DeFine: deep convolutional neural networks accurately quantify intensities of transcription factor-DNA binding and facilitate evaluation of functional non-coding variants
por: Wang, Meng, et al.
Publicado: (2018) -
Prediction of condition-specific regulatory genes using machine learning
por: Song, Qi, et al.
Publicado: (2020) -
Sequential regulatory activity prediction across chromosomes with convolutional neural networks
por: Kelley, David R., et al.
Publicado: (2018)