Cargando…

Diagnostic Accuracy of Maximum Intensity Projection in Diagnosis of Malignant Pulmonary Nodules

Introduction Pulmonary nodules are frequently encountered during chest imaging, and its evaluation is usually done by chest radiograph and computed tomography (CT) scan of chest. High resolution of multidetector CT (MDCT) has improved the nodule detection. Post processing techniques such as maximum...

Descripción completa

Detalles Bibliográficos
Autores principales: Jabeen, Naila, Qureshi, Ruby, Sattar, Amjad, Baloch, Musarat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6903899/
https://www.ncbi.nlm.nih.gov/pubmed/31886058
http://dx.doi.org/10.7759/cureus.6120
Descripción
Sumario:Introduction Pulmonary nodules are frequently encountered during chest imaging, and its evaluation is usually done by chest radiograph and computed tomography (CT) scan of chest. High resolution of multidetector CT (MDCT) has improved the nodule detection. Post processing techniques such as maximum intensity projection (MIP) can further improve the sensitivity of MDCT for nodule detection. Failure to diagnose malignancy in pulmonary nodules can delay the treatment. Therefore, the aim of this study was to determine the diagnostic accuracy of MIP in the diagnosis of malignant pulmonary nodules taking histopathology findings as gold standard. Materials and methods A retrospective cross-sectional study was conducted at Dow Institute of Radiology, Dow University of Health Sciences, from 1 December 2018 till 30 June 2019. Both male and female patients aged 18 years and above who underwent CT scan of chest with suspicion of pulmonary nodules were included. Patients already diagnosed with malignant pulmonary nodules and presenting for follow-up were excluded. Contrast-enhanced CT chest was performed on a multi-slice scanner. MIP reconstruction and evaluation was performed on the workstation. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of MIP were calculated taking histopathology findings as gold standard. Results A total of 202 patients were included in this study. The mean age of the patients was 55.87 ± 13.08 years. A total of 103 patients (51.0%) were males and 99 patients (49.0%) were females. There were 131 (64.9%) nodules with smooth margins and 71 (35.1%) nodules with irregular margins. The mean size of nodule was 3.1 ± 0.7 cm. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of MIP in diagnosing malignant pulmonary nodules were found to be 85.82%, 82.35%, 90.55%, 74.67%, and 84.65%, respectively, taking histopathology findings as gold standard. The nodules >3 cm in size had a higher sensitivity for diagnosing malignant pulmonary nodules. Smooth margin nodule had high sensitivity, specificity, and diagnostic accuracy for diagnosing malignant pulmonary nodules. Conclusion MIP images have high sensitivity, specificity, and diagnostic accuracy in the diagnosis of malignant pulmonary nodules. The utilization of MIP images can aid in the detection of malignant pulmonary nodules and help in formulating early treatment strategies for the patients. Other post processing techniques such as volume rendering and computer-aided detection can help in further improving patient care.