Cargando…

Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining

Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address th...

Descripción completa

Detalles Bibliográficos
Autores principales: Kirk, Isa Kristina, Simon, Christian, Banasik, Karina, Holm, Peter Christoffer, Haue, Amalie Dahl, Jensen, Peter Bjødstrup, Juhl Jensen, Lars, Rodríguez, Cristina Leal, Pedersen, Mette Krogh, Eriksson, Robert, Andersen, Henrik Ullits, Almdal, Thomas, Bork-Jensen, Jette, Grarup, Niels, Borch-Johnsen, Knut, Pedersen, Oluf, Pociot, Flemming, Hansen, Torben, Bergholdt, Regine, Rossing, Peter, Brunak, Søren
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904221/
https://www.ncbi.nlm.nih.gov/pubmed/31818369
http://dx.doi.org/10.7554/eLife.44941
_version_ 1783477967609921536
author Kirk, Isa Kristina
Simon, Christian
Banasik, Karina
Holm, Peter Christoffer
Haue, Amalie Dahl
Jensen, Peter Bjødstrup
Juhl Jensen, Lars
Rodríguez, Cristina Leal
Pedersen, Mette Krogh
Eriksson, Robert
Andersen, Henrik Ullits
Almdal, Thomas
Bork-Jensen, Jette
Grarup, Niels
Borch-Johnsen, Knut
Pedersen, Oluf
Pociot, Flemming
Hansen, Torben
Bergholdt, Regine
Rossing, Peter
Brunak, Søren
author_facet Kirk, Isa Kristina
Simon, Christian
Banasik, Karina
Holm, Peter Christoffer
Haue, Amalie Dahl
Jensen, Peter Bjødstrup
Juhl Jensen, Lars
Rodríguez, Cristina Leal
Pedersen, Mette Krogh
Eriksson, Robert
Andersen, Henrik Ullits
Almdal, Thomas
Bork-Jensen, Jette
Grarup, Niels
Borch-Johnsen, Knut
Pedersen, Oluf
Pociot, Flemming
Hansen, Torben
Bergholdt, Regine
Rossing, Peter
Brunak, Søren
author_sort Kirk, Isa Kristina
collection PubMed
description Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.
format Online
Article
Text
id pubmed-6904221
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher eLife Sciences Publications, Ltd
record_format MEDLINE/PubMed
spelling pubmed-69042212019-12-12 Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining Kirk, Isa Kristina Simon, Christian Banasik, Karina Holm, Peter Christoffer Haue, Amalie Dahl Jensen, Peter Bjødstrup Juhl Jensen, Lars Rodríguez, Cristina Leal Pedersen, Mette Krogh Eriksson, Robert Andersen, Henrik Ullits Almdal, Thomas Bork-Jensen, Jette Grarup, Niels Borch-Johnsen, Knut Pedersen, Oluf Pociot, Flemming Hansen, Torben Bergholdt, Regine Rossing, Peter Brunak, Søren eLife Computational and Systems Biology Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities. eLife Sciences Publications, Ltd 2019-12-10 /pmc/articles/PMC6904221/ /pubmed/31818369 http://dx.doi.org/10.7554/eLife.44941 Text en © 2019, Kirk et al http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Computational and Systems Biology
Kirk, Isa Kristina
Simon, Christian
Banasik, Karina
Holm, Peter Christoffer
Haue, Amalie Dahl
Jensen, Peter Bjødstrup
Juhl Jensen, Lars
Rodríguez, Cristina Leal
Pedersen, Mette Krogh
Eriksson, Robert
Andersen, Henrik Ullits
Almdal, Thomas
Bork-Jensen, Jette
Grarup, Niels
Borch-Johnsen, Knut
Pedersen, Oluf
Pociot, Flemming
Hansen, Torben
Bergholdt, Regine
Rossing, Peter
Brunak, Søren
Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title_full Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title_fullStr Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title_full_unstemmed Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title_short Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
title_sort linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through ehr data mining
topic Computational and Systems Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904221/
https://www.ncbi.nlm.nih.gov/pubmed/31818369
http://dx.doi.org/10.7554/eLife.44941
work_keys_str_mv AT kirkisakristina linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT simonchristian linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT banasikkarina linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT holmpeterchristoffer linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT haueamaliedahl linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT jensenpeterbjødstrup linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT juhljensenlars linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT rodriguezcristinaleal linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT pedersenmettekrogh linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT erikssonrobert linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT andersenhenrikullits linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT almdalthomas linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT borkjensenjette linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT grarupniels linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT borchjohnsenknut linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT pedersenoluf linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT pociotflemming linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT hansentorben linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT bergholdtregine linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT rossingpeter linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining
AT brunaksøren linkingglycemicdysregulationindiabetestosymptomscomorbiditiesandgeneticsthroughehrdatamining