Cargando…
Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae
Streptococcus agalactiae or Group B Streptococcus (GBS) remains a leading cause of neonatal infections worldwide; and the maternal vaginal-rectal colonization increases the risk of vertical transmission of GBS to neonates and development of infections. This study reports the in vitro antibacterial e...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904337/ https://www.ncbi.nlm.nih.gov/pubmed/31866975 http://dx.doi.org/10.3389/fmicb.2019.02806 |
_version_ | 1783477983365824512 |
---|---|
author | Morguette, Ana Elisa Belotto Bigotto, Briani Gisele Varella, Renata de Lima Andriani, Gabriella Maria Spoladori, Laís Fernanda de Almeida Pereira, Patrícia Moraes Lopes de Andrade, Fabio Goulart Lancheros, Cesar Armando Contreras Nakamura, Celso Vataru Syogo Arakawa, Nilton Bruschi, Marcos Luciano Carlos Tomaz, José Lonni, Audrey Alesandra Stinghen Garcia Kerbauy, Gilselena Tavares, Eliandro Reis Yamauchi, Lucy Megumi Yamada-Ogatta, Sueli Fumie |
author_facet | Morguette, Ana Elisa Belotto Bigotto, Briani Gisele Varella, Renata de Lima Andriani, Gabriella Maria Spoladori, Laís Fernanda de Almeida Pereira, Patrícia Moraes Lopes de Andrade, Fabio Goulart Lancheros, Cesar Armando Contreras Nakamura, Celso Vataru Syogo Arakawa, Nilton Bruschi, Marcos Luciano Carlos Tomaz, José Lonni, Audrey Alesandra Stinghen Garcia Kerbauy, Gilselena Tavares, Eliandro Reis Yamauchi, Lucy Megumi Yamada-Ogatta, Sueli Fumie |
author_sort | Morguette, Ana Elisa Belotto |
collection | PubMed |
description | Streptococcus agalactiae or Group B Streptococcus (GBS) remains a leading cause of neonatal infections worldwide; and the maternal vaginal-rectal colonization increases the risk of vertical transmission of GBS to neonates and development of infections. This study reports the in vitro antibacterial effect of the oleoresin from Copaifera officinalis Jacq. L. in natura (copaiba oil) and loaded into carbomer-hydrogel against planktonic and sessile cells of GBS. First, the naturally extracted copaiba oil was tested for the ability to inhibit the growth and metabolic activity of planktonic and sessile GBS cells. The time-kill kinetics showed that copaiba oil exhibited a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin [minimal bactericidal concentration (MBC) ranged from 0.06 mg/mL to 0.12 mg/mL]. Copaiba oil did not inhibit the growth of different Lactobacillus species, the indigenous members of the human microbiota. The mass spectral analyses of copaiba oil showed the presence of diterpenes, and the kaurenoic acid appears to be one of the active components of oleoresin from C. officinalis related to antibacterial activity against GBS. Microscopy analyses of planktonic GBS cells treated with copaiba oil revealed morphological and ultrastructural alterations, displaying disruption of the cell wall, damaged cell membrane, decreased electron density of the cytoplasm, presence of intracellular condensed material, and asymmetric septa. Copaiba oil also exhibited antibacterial activity against established biofilms of GBS strains, inhibiting the viability of sessile cells. Low-cost and eco-friendly carbomer-based hydrogels containing copaiba oil (0.5% – CARB-CO 0.5; 1.0% – CARB-CO 1.0) were then developed. However, only CARB-CO 1.0 preserved the antibacterial activity of copaiba oil against GBS strains. This formulation was homogeneous, soft, exhibited a viscoelastic behavior, and showed good biocompatibility with murine vaginal mucosa. Moreover, CARB-CO 1.0 showed a slow and sustained release of the copaiba oil, killing the planktonic and sessile (established biofilm) cells and inhibiting the biofilm formation of GBS on pre-coated abiotic surface. These results indicate that carbomer-based hydrogels may be useful as topical systems for delivery of copaiba oil directly into de vaginal mucosa and controlling S. agalactiae colonization and infection. |
format | Online Article Text |
id | pubmed-6904337 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-69043372019-12-20 Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae Morguette, Ana Elisa Belotto Bigotto, Briani Gisele Varella, Renata de Lima Andriani, Gabriella Maria Spoladori, Laís Fernanda de Almeida Pereira, Patrícia Moraes Lopes de Andrade, Fabio Goulart Lancheros, Cesar Armando Contreras Nakamura, Celso Vataru Syogo Arakawa, Nilton Bruschi, Marcos Luciano Carlos Tomaz, José Lonni, Audrey Alesandra Stinghen Garcia Kerbauy, Gilselena Tavares, Eliandro Reis Yamauchi, Lucy Megumi Yamada-Ogatta, Sueli Fumie Front Microbiol Microbiology Streptococcus agalactiae or Group B Streptococcus (GBS) remains a leading cause of neonatal infections worldwide; and the maternal vaginal-rectal colonization increases the risk of vertical transmission of GBS to neonates and development of infections. This study reports the in vitro antibacterial effect of the oleoresin from Copaifera officinalis Jacq. L. in natura (copaiba oil) and loaded into carbomer-hydrogel against planktonic and sessile cells of GBS. First, the naturally extracted copaiba oil was tested for the ability to inhibit the growth and metabolic activity of planktonic and sessile GBS cells. The time-kill kinetics showed that copaiba oil exhibited a dose-dependent bactericidal activity against planktonic GBS strains, including those resistant to erythromycin and/or clindamycin [minimal bactericidal concentration (MBC) ranged from 0.06 mg/mL to 0.12 mg/mL]. Copaiba oil did not inhibit the growth of different Lactobacillus species, the indigenous members of the human microbiota. The mass spectral analyses of copaiba oil showed the presence of diterpenes, and the kaurenoic acid appears to be one of the active components of oleoresin from C. officinalis related to antibacterial activity against GBS. Microscopy analyses of planktonic GBS cells treated with copaiba oil revealed morphological and ultrastructural alterations, displaying disruption of the cell wall, damaged cell membrane, decreased electron density of the cytoplasm, presence of intracellular condensed material, and asymmetric septa. Copaiba oil also exhibited antibacterial activity against established biofilms of GBS strains, inhibiting the viability of sessile cells. Low-cost and eco-friendly carbomer-based hydrogels containing copaiba oil (0.5% – CARB-CO 0.5; 1.0% – CARB-CO 1.0) were then developed. However, only CARB-CO 1.0 preserved the antibacterial activity of copaiba oil against GBS strains. This formulation was homogeneous, soft, exhibited a viscoelastic behavior, and showed good biocompatibility with murine vaginal mucosa. Moreover, CARB-CO 1.0 showed a slow and sustained release of the copaiba oil, killing the planktonic and sessile (established biofilm) cells and inhibiting the biofilm formation of GBS on pre-coated abiotic surface. These results indicate that carbomer-based hydrogels may be useful as topical systems for delivery of copaiba oil directly into de vaginal mucosa and controlling S. agalactiae colonization and infection. Frontiers Media S.A. 2019-12-04 /pmc/articles/PMC6904337/ /pubmed/31866975 http://dx.doi.org/10.3389/fmicb.2019.02806 Text en Copyright © 2019 Morguette, Bigotto, Varella, Andriani, Spoladori, Pereira, de Andrade, Lancheros, Nakamura, Arakawa, Bruschi, Tomaz, Lonni, Kerbauy, Tavares, Yamauchi and Yamada-Ogatta. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Morguette, Ana Elisa Belotto Bigotto, Briani Gisele Varella, Renata de Lima Andriani, Gabriella Maria Spoladori, Laís Fernanda de Almeida Pereira, Patrícia Moraes Lopes de Andrade, Fabio Goulart Lancheros, Cesar Armando Contreras Nakamura, Celso Vataru Syogo Arakawa, Nilton Bruschi, Marcos Luciano Carlos Tomaz, José Lonni, Audrey Alesandra Stinghen Garcia Kerbauy, Gilselena Tavares, Eliandro Reis Yamauchi, Lucy Megumi Yamada-Ogatta, Sueli Fumie Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title | Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title_full | Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title_fullStr | Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title_full_unstemmed | Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title_short | Hydrogel Containing Oleoresin From Copaifera officinalis Presents Antibacterial Activity Against Streptococcus agalactiae |
title_sort | hydrogel containing oleoresin from copaifera officinalis presents antibacterial activity against streptococcus agalactiae |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904337/ https://www.ncbi.nlm.nih.gov/pubmed/31866975 http://dx.doi.org/10.3389/fmicb.2019.02806 |
work_keys_str_mv | AT morguetteanaelisabelotto hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT bigottobrianigisele hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT varellarenatadelima hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT andrianigabriellamaria hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT spoladorilaisfernandadealmeida hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT pereirapatriciamoraeslopes hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT deandradefabiogoulart hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT lancheroscesararmandocontreras hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT nakamuracelsovataru hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT syogoarakawanilton hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT bruschimarcosluciano hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT carlostomazjose hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT lonniaudreyalesandrastinghengarcia hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT kerbauygilselena hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT tavareseliandroreis hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT yamauchilucymegumi hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae AT yamadaogattasuelifumie hydrogelcontainingoleoresinfromcopaiferaofficinalispresentsantibacterialactivityagainststreptococcusagalactiae |