Cargando…
Eliminating biasing signals in lung cancer images for prognosis predictions with deep learning
Deep learning has shown remarkable results for image analysis and is expected to aid individual treatment decisions in health care. Treatment recommendations are predictions with an inherently causal interpretation. To use deep learning for these applications in the setting of observational data, de...
Autores principales: | van Amsterdam, W. A. C., Verhoeff, J. J. C., de Jong, P. A., Leiner, T., Eijkemans, M. J. C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904461/ https://www.ncbi.nlm.nih.gov/pubmed/31840093 http://dx.doi.org/10.1038/s41746-019-0194-x |
Ejemplares similares
-
Individual treatment effect estimation in the presence of unobserved confounding using proxies: a cohort study in stage III non-small cell lung cancer
por: van Amsterdam, Wouter A. C., et al.
Publicado: (2022) -
The Association between Muscle Quantity and Overall Survival Depends on Muscle Radiodensity: A Cohort Study in Non-Small-Cell Lung Cancer Patients
por: van Amsterdam, Wouter A. C., et al.
Publicado: (2022) -
Eliminating bias/living with bias?
por: Chapman, Jens
Publicado: (2012) -
Deep learning for bias correction of MJO prediction
por: Kim, H., et al.
Publicado: (2021) -
Eliminating unintended bias in personalized policies using bias-eliminating adapted trees (BEAT)
por: Ascarza, Eva, et al.
Publicado: (2022)