Cargando…

Electronic heat flow and thermal shot noise in quantum circuits

When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Sivre, E., Duprez, H., Anthore, A., Aassime, A., Parmentier, F. D., Cavanna, A., Ouerghi, A., Gennser, U., Pierre, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904624/
https://www.ncbi.nlm.nih.gov/pubmed/31822660
http://dx.doi.org/10.1038/s41467-019-13566-8
_version_ 1783478031855124480
author Sivre, E.
Duprez, H.
Anthore, A.
Aassime, A.
Parmentier, F. D.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
author_facet Sivre, E.
Duprez, H.
Anthore, A.
Aassime, A.
Parmentier, F. D.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
author_sort Sivre, E.
collection PubMed
description When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons’ partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments.
format Online
Article
Text
id pubmed-6904624
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-69046242019-12-12 Electronic heat flow and thermal shot noise in quantum circuits Sivre, E. Duprez, H. Anthore, A. Aassime, A. Parmentier, F. D. Cavanna, A. Ouerghi, A. Gennser, U. Pierre, F. Nat Commun Article When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons’ partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments. Nature Publishing Group UK 2019-12-10 /pmc/articles/PMC6904624/ /pubmed/31822660 http://dx.doi.org/10.1038/s41467-019-13566-8 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Sivre, E.
Duprez, H.
Anthore, A.
Aassime, A.
Parmentier, F. D.
Cavanna, A.
Ouerghi, A.
Gennser, U.
Pierre, F.
Electronic heat flow and thermal shot noise in quantum circuits
title Electronic heat flow and thermal shot noise in quantum circuits
title_full Electronic heat flow and thermal shot noise in quantum circuits
title_fullStr Electronic heat flow and thermal shot noise in quantum circuits
title_full_unstemmed Electronic heat flow and thermal shot noise in quantum circuits
title_short Electronic heat flow and thermal shot noise in quantum circuits
title_sort electronic heat flow and thermal shot noise in quantum circuits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904624/
https://www.ncbi.nlm.nih.gov/pubmed/31822660
http://dx.doi.org/10.1038/s41467-019-13566-8
work_keys_str_mv AT sivree electronicheatflowandthermalshotnoiseinquantumcircuits
AT duprezh electronicheatflowandthermalshotnoiseinquantumcircuits
AT anthorea electronicheatflowandthermalshotnoiseinquantumcircuits
AT aassimea electronicheatflowandthermalshotnoiseinquantumcircuits
AT parmentierfd electronicheatflowandthermalshotnoiseinquantumcircuits
AT cavannaa electronicheatflowandthermalshotnoiseinquantumcircuits
AT ouerghia electronicheatflowandthermalshotnoiseinquantumcircuits
AT gennseru electronicheatflowandthermalshotnoiseinquantumcircuits
AT pierref electronicheatflowandthermalshotnoiseinquantumcircuits