Cargando…
Ethical considerations about artificial intelligence for prognostication in intensive care
BACKGROUND: Prognosticating the course of diseases to inform decision-making is a key component of intensive care medicine. For several applications in medicine, new methods from the field of artificial intelligence (AI) and machine learning have already outperformed conventional prediction models....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904702/ https://www.ncbi.nlm.nih.gov/pubmed/31823128 http://dx.doi.org/10.1186/s40635-019-0286-6 |
_version_ | 1783478043432452096 |
---|---|
author | Beil, Michael Proft, Ingo van Heerden, Daniel Sviri, Sigal van Heerden, Peter Vernon |
author_facet | Beil, Michael Proft, Ingo van Heerden, Daniel Sviri, Sigal van Heerden, Peter Vernon |
author_sort | Beil, Michael |
collection | PubMed |
description | BACKGROUND: Prognosticating the course of diseases to inform decision-making is a key component of intensive care medicine. For several applications in medicine, new methods from the field of artificial intelligence (AI) and machine learning have already outperformed conventional prediction models. Due to their technical characteristics, these methods will present new ethical challenges to the intensivist. RESULTS: In addition to the standards of data stewardship in medicine, the selection of datasets and algorithms to create AI prognostication models must involve extensive scrutiny to avoid biases and, consequently, injustice against individuals or groups of patients. Assessment of these models for compliance with the ethical principles of beneficence and non-maleficence should also include quantification of predictive uncertainty. Respect for patients’ autonomy during decision-making requires transparency of the data processing by AI models to explain the predictions derived from these models. Moreover, a system of continuous oversight can help to maintain public trust in this technology. Based on these considerations as well as recent guidelines, we propose a pathway to an ethical implementation of AI-based prognostication. It includes a checklist for new AI models that deals with medical and technical topics as well as patient- and system-centered issues. CONCLUSION: AI models for prognostication will become valuable tools in intensive care. However, they require technical refinement and a careful implementation according to the standards of medical ethics. |
format | Online Article Text |
id | pubmed-6904702 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-69047022019-12-26 Ethical considerations about artificial intelligence for prognostication in intensive care Beil, Michael Proft, Ingo van Heerden, Daniel Sviri, Sigal van Heerden, Peter Vernon Intensive Care Med Exp Review BACKGROUND: Prognosticating the course of diseases to inform decision-making is a key component of intensive care medicine. For several applications in medicine, new methods from the field of artificial intelligence (AI) and machine learning have already outperformed conventional prediction models. Due to their technical characteristics, these methods will present new ethical challenges to the intensivist. RESULTS: In addition to the standards of data stewardship in medicine, the selection of datasets and algorithms to create AI prognostication models must involve extensive scrutiny to avoid biases and, consequently, injustice against individuals or groups of patients. Assessment of these models for compliance with the ethical principles of beneficence and non-maleficence should also include quantification of predictive uncertainty. Respect for patients’ autonomy during decision-making requires transparency of the data processing by AI models to explain the predictions derived from these models. Moreover, a system of continuous oversight can help to maintain public trust in this technology. Based on these considerations as well as recent guidelines, we propose a pathway to an ethical implementation of AI-based prognostication. It includes a checklist for new AI models that deals with medical and technical topics as well as patient- and system-centered issues. CONCLUSION: AI models for prognostication will become valuable tools in intensive care. However, they require technical refinement and a careful implementation according to the standards of medical ethics. Springer International Publishing 2019-12-10 /pmc/articles/PMC6904702/ /pubmed/31823128 http://dx.doi.org/10.1186/s40635-019-0286-6 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Review Beil, Michael Proft, Ingo van Heerden, Daniel Sviri, Sigal van Heerden, Peter Vernon Ethical considerations about artificial intelligence for prognostication in intensive care |
title | Ethical considerations about artificial intelligence for prognostication in intensive care |
title_full | Ethical considerations about artificial intelligence for prognostication in intensive care |
title_fullStr | Ethical considerations about artificial intelligence for prognostication in intensive care |
title_full_unstemmed | Ethical considerations about artificial intelligence for prognostication in intensive care |
title_short | Ethical considerations about artificial intelligence for prognostication in intensive care |
title_sort | ethical considerations about artificial intelligence for prognostication in intensive care |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904702/ https://www.ncbi.nlm.nih.gov/pubmed/31823128 http://dx.doi.org/10.1186/s40635-019-0286-6 |
work_keys_str_mv | AT beilmichael ethicalconsiderationsaboutartificialintelligenceforprognosticationinintensivecare AT proftingo ethicalconsiderationsaboutartificialintelligenceforprognosticationinintensivecare AT vanheerdendaniel ethicalconsiderationsaboutartificialintelligenceforprognosticationinintensivecare AT svirisigal ethicalconsiderationsaboutartificialintelligenceforprognosticationinintensivecare AT vanheerdenpetervernon ethicalconsiderationsaboutartificialintelligenceforprognosticationinintensivecare |