Cargando…
Artificial Intelligence Technologies for Coping with Alarm Fatigue in Hospital Environments Because of Sensory Overload: Algorithm Development and Validation
BACKGROUND: Informed estimates claim that 80% to 99% of alarms set off in hospital units are false or clinically insignificant, representing a cacophony of sounds that do not present a real danger to patients. These false alarms can lead to an alert overload that causes a health care provider to mis...
Autores principales: | Fernandes, Chrystinne Oliveira, Miles, Simon, Lucena, Carlos José Pereira De, Cowan, Donald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904899/ https://www.ncbi.nlm.nih.gov/pubmed/31769762 http://dx.doi.org/10.2196/15406 |
Ejemplares similares
-
Detecting False Alarms by Analyzing Alarm-Context Information: Algorithm Development and Validation
por: Fernandes, Chrystinne, et al.
Publicado: (2020) -
A new algorithm for an old problem: Reducing false alarms and alarm fatigue for ventricular tachycardia detection in the hospital setting
por: Harvey, Margaret
Publicado: (2023) -
Clinical Alarms in Intensive Care Units: Perceived Obstacles of Alarm Management and Alarm Fatigue in Nurses
por: Cho, Ok Min, et al.
Publicado: (2016) -
Clinical Alarms in intensive care: implications of alarm fatigue for the
safety of patients
por: Bridi, Adriana Carla, et al.
Publicado: (2014) -
Addressing vital sign alarm fatigue using personalized alarm thresholds
por: Poole, Sarah, et al.
Publicado: (2018)