Cargando…
Selection of microbial biomarkers with genetic algorithm and principal component analysis
BACKGROUND: Principal components analysis (PCA) is often used to find characteristic patterns associated with certain diseases by reducing variable numbers before a predictive model is built, particularly when some variables are correlated. Usually, the first two or three components from PCA are use...
Autores principales: | Zhang, Ping, West, Nicholas P., Chen, Pin-Yen, Thang, Mike W. C., Price, Gareth, Cripps, Allan W., Cox, Amanda J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6904994/ https://www.ncbi.nlm.nih.gov/pubmed/31823717 http://dx.doi.org/10.1186/s12859-019-3001-4 |
Ejemplares similares
-
A correlation-based network for biomarker discovery in obesity with metabolic syndrome
por: Chen, Pin-Yen, et al.
Publicado: (2019) -
Principal component analysis networks and algorithms
por: Kong, Xiangyu, et al.
Publicado: (2017) -
The impacts of faecal subsampling on microbial compositional profiling
por: Cox, Amanda J., et al.
Publicado: (2022) -
Stable Tensor Principal Component Pursuit: Error Bounds and Efficient Algorithms
por: Fang, Wei, et al.
Publicado: (2019) -
Modulation of Allergic Inflammation in the Nasal Mucosa of Allergic Rhinitis Sufferers With Topical Pharmaceutical Agents
por: Watts, Annabelle M., et al.
Publicado: (2019)